Tensor Decomposition for Healthcare Analytics

Matteo Ruffini

Laboratory for Relational Algorithmic, Complexity and Learning

matteo.ruffini@estudiant.upc.edu

November 5, 2017

Overview

2 Clustering

- Mixture Model Clustering
- Tensor Decomposition
- Mixture of independent Bernoulli

3 Applications to Healthcare Analytics

- Data and objectives
- Results

Task: to segment patients in groups with similar clinical profiles.

- Find recurrent comorbidities.
- S Assigning and planning resources: drugs and doctors.

Task: to segment patients in groups with similar clinical profiles.

- Find recurrent comorbidities.
- S Assigning and planning resources: drugs and doctors.
- Data: Electronic Healthcare Records (EHR).

Objective: Use these data to create clusters of patients.

In ICD code, to each disease is associated a number

 $278 \rightarrow \textit{Obesity}, 401 \rightarrow \textit{Hypertension}$

э

___ ▶

In ICD code, to each disease is associated a number

 $278 \rightarrow \textit{Obesity}, 401 \rightarrow \textit{Hypertension}$

Records: list of patients with their diseases \rightarrow patient-disease matrix.

	Diseases		820	401	278	560
Patient 1	820, 401	Patient 1	1	1	0	0
Patient 2	401, 278,	Patient 2	0	1	1	0
Patient 3	560, 820, 278	Patient 3	1	0	1	1

Objective: cluster the rows of the patient-disease matrix.

Sparse and high dimensional data.

Clustering: one of the fundamental tasks of Machine Learning.

Objective: Dataset of N samples \rightarrow partition in coherent subsets **Dataset**: a matrix $X \in \mathbb{R}^{N \times n}$

$$X^{(i)} = (x_1^{(i)}, ..., x_n^{(i)})$$

Group together similar rows.

Standard methods: *k-means, k-medioids, single linkage...*

Distance-based: poor performances on high dimensional sparse data.

Definition (Mixture Model)

 $Y \in \{1, ..., k\}$ A latent discrete variable. $X = (x_1, ..., x_n)$ observable, depends on Y.

$$P(X) = \sum_{i=1}^{k} P(Y = i) P(X|Y = i)$$

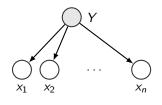
 γ x_1 x_2 \cdots x_n

 x_i are called **features**.

Definition (Mixture Model)

 $Y \in \{1, ..., k\}$ A latent discrete variable. $X = (x_1, ..., x_n)$ observable, depends on Y.

$$P(X) = \sum_{i=1}^{k} P(Y = i) P(X|Y = i)$$



 x_i are called **features**.

Generative process for one sample:

Clustering

From an outcome of X (observed) \rightarrow Infer the outcome of Y (unknown)

k clusters.

Clustering

From an outcome of X (observed) \rightarrow Infer the outcome of Y (unknown)

k clusters.

Parameters characterizing a mixture model:

$$\omega_h := P(Y = h), \ \omega := (\omega_1, \dots, \omega_k)^\top, \ \Omega := diag(\omega).$$

$$\mu_{i,j} = E(x_i | Y = j), \quad M = (\mu_{i,j})_{i,j} = [\mu_1|, ..., |\mu_k] \in \mathbb{R}^{n \times k}$$

If conditional distributions and the model parameters are known:

$$P(Y = j | X, M, \omega) \propto P(X | Y = j, M) \omega_j$$

$$Cluster(X) = \underset{j=1,...,k}{\arg \max} P(Y = j | X, M, \omega)$$

It is crucial to know the parameters of the model (M, ω) .

Matteo Ruffini (UPC)

Observables are binary and conditionally independent: $x_i \in \{0, 1\}$.

The expectations coincide with the probability of a positive outcome.

$$\mu_{i,j}=P(x_i=1|Y=j).$$

$$P(Y=j|X) \propto \omega_j \prod_{i=1}^n \mu_{i,j}^{x_i} (1-\mu_{i,j})^{1-x_i}$$

Clustering Rule:

$$Cluster(X) = \arg\max_{j=1,...,k} \omega_j \prod_{i=1}^n \mu_{i,j}^{x_i} (1-\mu_{i,j})^{1-x_i}$$

Advantages:

• Robust to irrelevant features:

$$P(x_i) = P(x_i | Y = j)$$

• Algorithms with provable guarantees of optimality.

Advantages:

• Robust to irrelevant features:

$$P(x_i) = P(x_i | Y = j)$$

• Algorithms with provable guarantees of optimality.

Disadvantages:

• Model assumption on the reality.

Advantages:

• Robust to irrelevant features:

$$P(x_i) = P(x_i | Y = j)$$

• Algorithms with provable guarantees of optimality.

Disadvantages:

- Model assumption on the reality.
- To sum up: Two steps:
 - Estimate the parameters of the mixture.
 - ② Group together similar elements, using Bayes' theorem.

Learning mixture parameters

Standard method Maximum Likelihood.

Find parameters $\Theta = (M, \omega)$ maximizing the likelihood on $X \in \mathbb{R}^{N imes n}$

$$\max_{\Theta} P(X, \Theta) = \max_{\Theta} \prod_{i=1}^{N} \sum_{j=1}^{k} P(X^{(i)} | Y = j, M) \omega_j$$

Maximizing this is hard

In general there are no closed form solutions.

Expectation Maximization (EM)

Iterative algorithm from [Dempster et al.(1977)]

- Randomly initialize (M, ω)
- Oluster the samples.
- **③** Use the clusters to recalculate (M, ω) .
- Iterate over steps 2 and 3 until convergence.

Expectation Maximization (EM)

Iterative algorithm from [Dempster et al.(1977)]

- Randomly initialize (M, ω)
- Oluster the samples.
- **③** Use the clusters to recalculate (M, ω) .
- Iterate over steps 2 and 3 until convergence.

Pro and cons

- Iteratively increases the likelihood.
- No guarantees of reaching global optimum.
- EM is slow.
- The quality of the results depends on the initialization:

Good starting points \rightarrow Good outputs

12 / 36

A general approach, outlined in [Anandkumar et al., 2014].

A general approach, outlined in [Anandkumar et al., 2014].

• Estimate (Recall: $M = [\mu_1|, ..., |\mu_k], \ \mu_i = E[X|Y = i] \in \mathbb{R}^n$).

$$egin{aligned} & M_1 := M \, \omega \in \mathbb{R}^n \ & M_2 := M \, diag(\omega) \, M^ op \in \mathbb{R}^{n imes n}, \ & M_3 := \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \otimes \mu_i \otimes \mu_i \in \mathbb{R}^{n imes n imes n} \end{aligned}$$

A general approach, outlined in [Anandkumar et al., 2014].

• Estimate (Recall: $M = [\mu_1|, ..., |\mu_k], \ \mu_i = E[X|Y = i] \in \mathbb{R}^n$).

$$egin{aligned} & M_1 := M\,\omega\in\mathbb{R}^n \ & M_2 := M\,diag(\omega)\,M^ op\in\mathbb{R}^{n imes n}, \ & M_3 := \sum_{i=1}^k \omega_i \mu_i\otimes\mu_i\otimes\mu_i\otimes\mu_i\in\mathbb{R}^{n imes n imes n} \end{aligned}$$

2 Retrieve (M, ω) with a tensor decomposition algorithm \mathcal{A} :

$$\mathcal{A}(M_1, M_2, M_3) \rightarrow (M, \omega)$$

A general approach, outlined in [Anandkumar et al., 2014].

• Estimate (Recall: $M = [\mu_1|, ..., |\mu_k], \ \mu_i = E[X|Y = i] \in \mathbb{R}^n$).

$$egin{aligned} & M_1 := M \, \omega \in \mathbb{R}^n \ & M_2 := M \, diag(\omega) \, M^ op \in \mathbb{R}^{n imes n}, \ & M_3 := \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \otimes \mu_i \otimes \mu_i \in \mathbb{R}^{n imes n imes n} \end{aligned}$$

2 Retrieve (M, ω) with a tensor decomposition algorithm \mathcal{A} :

$$\mathcal{A}(M_1, M_2, M_3) \rightarrow (M, \omega)$$

- Step 1: Depends on the specific properties of the mixture.
- Step 2: Is general (need assumptions on M).

Matteo Ruffini (UPC)

13 / 36

Example: Mixture of Independent Gaussians

Dataset $X \in \mathbb{R}^{N \times n}$ with iid rows $X^{(i)} = (x_1^{(i)}, ..., x_n^{(i)})$.

Model settings:

- $x_h^{(i)}$ and $x_l^{(i)}$ are conditionally independent $\forall h \neq l$.
- $x_h^{(i)}$ conditioned to Y is a Gaussian, with known stdev σ :

$$P(x_h|Y=i) \approx \mathcal{N}(\mu_{h,i},\sigma)$$

Example: Mixture of Independent Gaussians

Dataset $X \in \mathbb{R}^{N \times n}$ with iid rows $X^{(i)} = (x_1^{(i)}, ..., x_n^{(i)})$.

Model settings:

- $x_h^{(i)}$ and $x_l^{(i)}$ are conditionally independent $\forall h \neq l$.
- $x_h^{(i)}$ conditioned to Y is a Gaussian, with known stdev σ :

$$P(x_h|Y=i) \approx \mathcal{N}(\mu_{h,i},\sigma)$$

Theorem ([Hsu et al. 2013])

Define the following three quantities:

$$\begin{split} \tilde{M}_1 &= \sum_{i=1}^{N} \frac{X^{(i)}}{N}, \quad \tilde{M}_2 = \frac{X^{\top}X}{N} - \sigma^2 \mathbb{I}_n \\ \tilde{M}_3 &= \sum_{i=1}^{N} \frac{X^{(i)} \otimes X^{(i)}}{N} - \sigma^2 \sum_{i=1}^{n} (\tilde{M}_1 \otimes \mathbf{e}_i \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \tilde{M}_1 \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{e}_i) \\ Then \lim_{N \to \infty} \tilde{M}_i &= M_i \ \forall i \in \{1, 2, 3\} \end{split}$$

Similar (but more technical) procedures for many Mixture Models:

- Mixture of multinomial distributions (Single Topic Model) [Ruffini, Casanellas, Gavaldà (2017)]
- Naive Bayes Models [Anandkumar et al. 2012].

This estimation procedure can be generalized to other latent variable models (like Hidden Markov Models, Latent Dirichlet Allocation...)

Given estimated \tilde{M}_1, \tilde{M}_2 and \tilde{M}_3 we feed an algorithm \mathcal{A} to recover estimated $(\tilde{M}, \tilde{\omega})$

An algorithm \mathcal{A}

$$\mathcal{A}(M_1, M_2, M_3, k) \rightarrow (M, \omega)$$

Assumptions:

- The centers are linearly independent (*M* has rank $k \leq n$)
- At least one feature has different conditional expectations:

$$E(x_i|Y=j) \neq E(x_i|Y=h) \ \forall i \neq h$$

Observations (recall: $\Omega = diag(\omega)$)

• $M_2 = M\Omega M^{\top}$ by definition.

Observations (recall: $\Omega = diag(\omega)$)

• $M_2 = M\Omega M^{\top}$ by definition.

2 Also $M_2 = U_k S_k U_k^\top = E_k E_k^\top$ with a SVD. Then

 $M\Omega^{\frac{1}{2}} = E_k O$, for some $O: OO^{\top} = \mathbb{I}_k$

Observations (recall: $\Omega = diag(\omega)$)

• $M_2 = M\Omega M^{\top}$ by definition.

2 Also $M_2 = U_k S_k U_k^{\top} = E_k E_k^{\top}$ with a SVD. Then

 $M\Omega^{\frac{1}{2}} = E_k O$, for some $O: OO^{\top} = \mathbb{I}_k$

• $M_3 := \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \otimes \mu_i$ so its r - th slice is:

$$M_{3,r} = M\Omega^{\frac{1}{2}} diag((\mu_{r,1},...,\mu_{r,k}))\Omega^{\frac{1}{2}}M^{\top}$$

Observations (recall: $\Omega = diag(\omega)$) **1** $M_2 = M\Omega M^{\top}$ by definition. **2** Also $M_2 = U_k S_k U_k^{\top} = E_k E_k^{\top}$ with a SVD. Then $M\Omega^{\frac{1}{2}} = E_k O$, for some $O: OO^{\top} = \mathbb{I}_k$ **3** $M_3 := \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \otimes \mu_i$ so its r - th slice is: $M_{3,r} = M\Omega^{\frac{1}{2}} diag((\mu_{r,1}, ..., \mu_{r,k}))\Omega^{\frac{1}{2}} M^{\top}$

$$H_r = E_k^{\dagger} M_{3,r}(E_k^{\top})^{\dagger} = Odiag((\mu_{r,1}, ..., \mu_{r,k}))O^{\top}$$

17 / 36

Observations (recall: $\Omega = diag(\omega)$) **a** $M_2 = M\Omega M^{\top}$ by definition. **a** Also $M_2 = U_k S_k U_k^{\top} = E_k E_k^{\top}$ with a SVD. Then $M\Omega^{\frac{1}{2}} = E_k O$, for some $O: OO^{\top} = \mathbb{I}_k$ **a** $M_3 := \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \otimes \mu_i$ so its r - th slice is: $M_{3,r} = M\Omega^{\frac{1}{2}} diag((\mu_{r,1}, ..., \mu_{r,k}))\Omega^{\frac{1}{2}} M^{\top}$

$$H_r = E_k^{\dagger} M_{3,r}(E_k^{\top})^{\dagger} = Odiag((\mu_{r,1}, ..., \mu_{r,k}))O^{\top}$$

Solution The singular values of H_r are the r - th row of M_r .

Matteo Ruffini (UPC)

Algorithm

- Take as input (M_1, M_2, M_3, k)
- 2 Decompose M_2 as $M_2 = E_k E_k^\top$
- Calculate

$$H_r = E_k^{\dagger} M_{3,r} (E_k^{\top})^{\dagger}$$

- **(4)** Recover the r th row of M as the Singular Values of H_r .
- Recover ω solving $M\omega = M_1$

Reference: A new Spectral Method for Latent Variable Models [Ruffini, Casanellas, Gavaldà (2017)]

$SVTD(M_1, M_2, M_3, k) \rightarrow (M, \omega)$

Small perturbations on the input \rightarrow Small perturbations on the output.

$SVTD(ilde{M}_1, ilde{M}_2, ilde{M}_3,k) ightarrow (ilde{M}, ilde{\omega})$

 $SVTD(M_1, M_2, M_3, k) \rightarrow (M, \omega)$

Small perturbations on the input \rightarrow Small perturbations on the output. $SVTD(\tilde{M}_1, \tilde{M}_2, \tilde{M}_3, k) \rightarrow (\tilde{M}, \tilde{\omega})$

Theorem ([Ruffini, Casanellas, Gavaldà (2017)]) If $||\tilde{M}_2 - M_2||_F < \epsilon$, $||\tilde{M}_3 - M_3||_F < \epsilon$, then, for sufficiently small ϵ , $||M - \tilde{M}||_F \le C_1 \epsilon + O(C_2 \epsilon^2)$

for some C_1 and C_2 depending on the model parameters.

- **1** Take a dataset X, with rows sampled from a given mixture model.
- 2 Estimate the moment tensors $\tilde{M}_1, \tilde{M}_2, \tilde{M}_3$.
- **③** Retrieve estimated $(\tilde{M}, \tilde{\omega})$.
- Optionally, use EM to improve the obtained $(\tilde{M}, \tilde{\omega})$.
- **5** Use Bayes' theorem to cluster the rows of X.

In some cases we don't know how to directly estimate $\tilde{M}_1, \tilde{M}_2, \tilde{M}_3$ X a dataset with rows \approx mixture of independent Bernoulli.

Open Problem: how to efficiently estimate \tilde{M}_2, \tilde{M}_3 ?

$$X \xrightarrow{\gamma} \tilde{M}_2, \tilde{M}_3$$

(the issue are the diagonal entries...)

A work-around: the three views trick (Idea)

Split the observables in three views:

$$X^{(i)} = (\underbrace{x_1^{(i)}, \dots, x_{d_a}^{(i)}}_{X_a^{(i)}}, \underbrace{x_{d_{a+1}}^{(i)}, \dots, x_{d_{a+d_b}}^{(i)}}_{X_b^{(i)}}, \underbrace{x_{d_{a+d_b+1}}^{(i)}, \dots, x_{d_{a+d_b+d_c}}^{(i)}}_{X_c^{(i)}}), \ M = \begin{pmatrix} M_a \\ M_b \\ M_c \end{pmatrix}$$

A work-around: the three views trick (Idea)

Split the observables in three views:

$$X^{(i)} = (\underbrace{x_1^{(i)}, \dots, x_{d_a}^{(i)}}_{x_a^{(i)}}, \underbrace{x_{d_a+1}^{(i)}, \dots, x_{d_a+d_b}^{(i)}}_{x_b^{(i)}}, \underbrace{x_{d_a+d_b+1}^{(i)}, \dots, x_{d_a+d_b+d_c}^{(i)}}_{x_c^{(i)}}), \ M = \begin{pmatrix} M_a \\ M_b \\ M_c \end{pmatrix}$$

Estimate subtensors of \tilde{M}_2, \tilde{M}_3 . [Anandkumar et al., 2014]

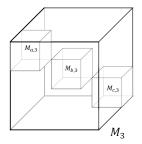
For j = a, b, c

$$M_{j,2} := M_j \operatorname{diag}(\omega) M_j^{\top},$$

$$M_{j,3} := \sum_{i=1}^k \omega_i \mu_i^{(j)} \otimes \mu_i^{(j)} \otimes \mu_i^{(j)}$$

Decompose them to get M_j

Get M by concatenation.



Experiments - Mixture of independent Bernoulli



Experiment: generate a synthetic dataset and cluster its rows with SVTD and with k-means, spectral clustering and PCA clustering.

Accuracy metric: Adjusted Rand Index. It is 1 if the clustering is perfect, 0 if it is bad (like random labeling).

Clustering Patients with Tensor Decomposition

[Ruffini, Gavaldà, Limón (2017)]

Source: Servei Català de la Salut.

Dataset Diagnostics of patients admitted to the hospitals in 2016.

Data format Each row is a visit: up to 10 diagnostics in ICD-9 format.

Two subset datasets

- Patients having diagnostic 428 in the ICD-9 code (Heart Failure).
- Patients with serious diseases to be treated it top hospitals.

Objective:

- I To create meaningful clusters of patients in each dataset.
- **2** To visualize the key characteristics of each cluster.

25 / 36

Convert each dataset in a patient-disease matrix:

	Disease 1	Disease 2	Disease 3	
Patient 1	1	1	0	
Patient 2	0	1	1	
Patient 3	1	0	1	

3

Image: A mathematical states and a mathem

Convert each dataset in a patient-disease matrix:

	Disease 1	Disease 2	Disease 3	
Patient 1	1	1	0	
Patient 2	0	1	1	
Patient 3	1	0	1	

Data are modeled as mixture of independent Bernoulli variables

- Latent state \rightarrow Medical status of a patient.
- Observed diseases depend on the patient status.
- Once in a status, diagnostics are independent.

We have a mixture of independent Bernoulli:

- Recover $(\tilde{M}, \tilde{\omega})$.
- **2** Improve the estimated $(\tilde{M}, \tilde{\omega})$ with EM.
- **③** Cluster the rows of X into k clusters.
- Int the results.

The number of clusters is manually set as an external parameter, (from expert's considerations).

Heart Failure Dataset

- N = 23082 (23082 individual patient records).
- All the patients in the dataset have a Heart Failure as a diagnostic.
- k = 5 clusters.

"Tertiary" Dataset

- N = 16311 individual patient records.
- k = 6 clusters.

In both cases n = 696 registered diagnostics (columns of the datasets).

Visual patterns: Heat-maps

Heat-maps of the two datasets:

- Black dots: diagnostics
- Background color: clusters

Matteo Ruffini (UPC)

November 5, 2017

29 / 36

 $\text{Heat-maps} \rightarrow \text{patterns}$ in the clusters.

What there is inside the patterns?

Find the **relevant** diagnostics for each cluster.

Relevance:

$$relevance(i,j) = \lambda \log(\mu_{i,j}) + (1-\lambda) \log(\frac{\mu_{i,j}}{\sum_{h=1}^{k} \mu_{i,h}\omega_h})$$

where $\mu_{i,j} = P(x_i = 1 | Y = j)$.

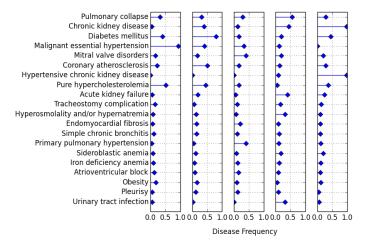
- High relevance: more frequent in a cluster than in the full dataset.
- Low relevance: low/high frequency everywhere.

Heart Failure Dataset - Content of the clusters

Cluster 1: Hypertension, Tachycardia, Hypercholesterolemia, Diabetes mellitus, Obesity Cluster 2: Diabetes mellitus, foronary atherosclerosis, Atherosclerosis aorta	Disea Mitr Hy	Cluster 3: onary hyperte ses tricuspid al valve disor pertensive he disease sting heart di	valve, ders, eart	Hyperte kidn Chronic Acute I Diabe Streptoc Urinary Kid Hyperte chronic	luster 4: ensive chronic, ey disease, kidney disease, kidney failure, stes mellitus luster 5: occus infection, ney failure, ney failure, nsive heart and kidney disease
Cluster ID:	1	2	3	4	5
	7290	2915	4408	2936	5533

November 5, 2017

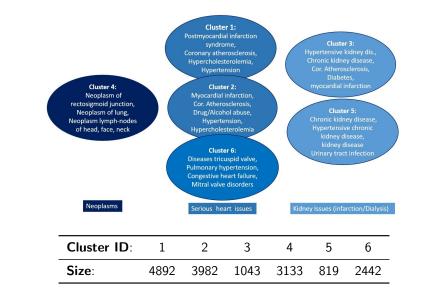
Heart Failure Dataset - disease-frequency chart



November 5, 2017

- ∢ /⊐ >

"Tertiary" Dataset - Content of the clusters



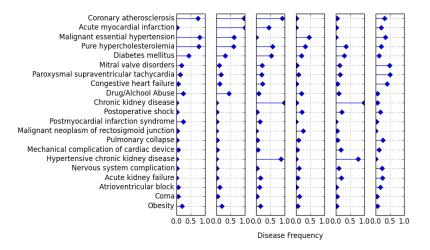
November 5, 2017

(日) (同) (三) (三)

33 / 36

э

"Tertiary" Dataset- disease-frequency chart



< 一型

34 / 36

Tensor Decomposition for Healthcare Analytics

Matteo Ruffini

Laboratory for Relational Algorithmic, Complexity and Learning

matteo.ruffini@estudiant.upc.edu

November 5, 2017