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Task: to segment patients in groups with similar clinical profiles.

© Similar patients — Similar cares.
@ Find recurrent comorbidities.

© Assigning and planning resources: drugs and doctors.
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Overview

Task: to segment patients in groups with similar clinical profiles.

© Similar patients — Similar cares.
@ Find recurrent comorbidities.

© Assigning and planning resources: drugs and doctors.

Data: Electronic Healthcare Records (EHR).

Objective: Use these data to create clusters of patients.
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Example: ICD-9 EHR

In ICD code, to each disease is associated a number

278 — Obesity, 401 — Hypertension
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Example: ICD-9 EHR

In ICD code, to each disease is associated a number

278 — Obesity, 401 — Hypertension

Records: list of patients with their diseases — patient-disease matrix.

Diseases 820 401 278 560
Patient 1 820, 401 Patient 1 1 1 0 0
Patient 2 401, 278, Patient 2 0 1 1 0
Patient 3 560, 820, 278 Patient 3 1 0 1 1

Objective: cluster the rows of the patient-disease matrix.

Sparse and high dimensional data.
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Clustering

Clustering: one of the fundamental tasks of Machine Learning.
Objective: Dataset of N samples — partition in coherent subsets

Dataset: a matrix X € RNVxn

Group together similar rows.
Standard methods: k-means, k-medioids, single linkage...

Distance-based: poor performances on high dimensional sparse data.
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Mixture Models

Definition (Mixture Model)

Y € {1,...,k} A latent discrete variable.
X = (x1,...,X,) observable, depends on Y.

P(X) = ZP (XY =1)

x; are called features.
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Mixture Models

Definition (Mixture Model)

Y € {1,...,k} A latent discrete variable.
X = (x1,...,X,) observable, depends on Y.

P(X) = ZP (XY =1)

x; are called features.

y

Generative process for one sample:

@ Draw Y, obtain Y =i € {1,..., k}.
@ Draw X € R" ~ P(X|Y = i)
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Mixture Model Clustering

From an outcome of X (observed) — Infer the outcome of Y (unknown)

k clusters.
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Mixture Model Clustering

From an outcome of X (observed) — Infer the outcome of Y (unknown)

k clusters.

Parameters characterizing a mixture model:
wh=P(Y =h), wi=(w1,...,w) ", Q:=diag(w).

pij=E(ilY =), M= (uij)ij=[pal, ..., ] € R™¥

If conditional distributions and the model parameters are known:
P(Y =j|X,M,w) x P(X|Y = j, M)w;

Cluster(X) = argmax P(Y = j|X, M,w)
J=1,000k

It is crucial to know the parameters of the model (M, w).
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Mixture of Independent Bernoulli

Observables are binary and conditionally independent: x; € {0,1}.

The expectations coincide with the probability of a positive outcome.

pij = P(xi =11Y =).

n
P(Y = jIX) ocwj [ [ mf5(1 = pij)t
i=1
Clustering Rule:

n
Cluster(X) = argmaxw; [ [ (1 — i)'~
J=look i

Matteo Ruffini (UPC)

Tensor Decomposition for Healthcare November 5, 2017 8

/36



Mixture Model Clustering: sum up

Advantages:

@ Robust to irrelevant features:
P(x;) = P(xi|Y =)

@ Algorithms with provable guarantees of optimality.
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Mixture Model Clustering: sum up

Advantages:

@ Robust to irrelevant features:
P(xi) = P(xi|Y =)
@ Algorithms with provable guarantees of optimality.

Disadvantages:

@ Model assumption on the reality.
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Mixture Model Clustering: sum up

Advantages:

@ Robust to irrelevant features:
P(xi) = P(xi|Y =)
@ Algorithms with provable guarantees of optimality.

Disadvantages:

@ Model assumption on the reality.

To sum up: Two steps:
© Estimate the parameters of the mixture.

@ Group together similar elements, using Bayes' theorem.
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Learning mixture parameters
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Maximum Likelihood Estimate

Standard method Maximum Likelihood.
Find parameters © = (M, w) maximizing the likelihood on X € RN*"
Nk
max P(X, ©) = mgx[[l; P(XDY = j, M)w;
Maximizing this is hard

In general there are no closed form solutions.
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Expectation Maximization (EM)

Iterative algorithm from [Dempster et al.(1977)]

@ Randomly initialize (M, w)
@ Cluster the samples.
© Use the clusters to recalculate (M, w).

@ lterate over steps 2 and 3 until convergence.
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Expectation Maximization (EM)

Iterative algorithm from [Dempster et al.(1977)]

@ Randomly initialize (M, w)
@ Cluster the samples.
© Use the clusters to recalculate (M, w).

@ lterate over steps 2 and 3 until convergence.
Pro and cons

o lteratively increases the likelihood.

@ No guarantees of reaching global optimum.

o EM is slow.

@ The quality of the results depends on the initialization:

Good starting points — Good outputs
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Alternative Approach: Tensor Decomposition

A general approach, outlined in [Anandkumar et al., 2014].
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Alternative Approach: Tensor Decomposition

A general approach, outlined in [Anandkumar et al., 2014].
@ Estimate (Recall: M = [u1], ..., |uk], pi = E[X|Y =i] € R").

My :=MweR"
M, := M diag(w) MT € R™"
Ms = S5 wipi @ pi @ pi € R7X0
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Alternative Approach: Tensor Decomposition

A general approach, outlined in [Anandkumar et al., 2014].
@ Estimate (Recall: M = [u1], ..., |uk], pi = E[X|Y =i] € R").

My :=MweR"
M, := M diag(w) MT € R™"
Ms = S5 wipi @ pi @ pi € R7X0

@ Retrieve (M, w) with a tensor decomposition algorithm .A:

A(Mla M2) M3) — (M,(.U)
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Alternative Approach: Tensor Decomposition

A general approach, outlined in [Anandkumar et al., 2014].
@ Estimate (Recall: M = [u1], ..., |uk], pi = E[X|Y =i] € R").

My :=MweR"
M, := M diag(w) MT € R™"
Ms = S5 wipi @ pi @ pi € R7X0

@ Retrieve (M, w) with a tensor decomposition algorithm .A:

A(Mla M2) M3) — (M,(.U)

@ Step 1: Depends on the specific properties of the mixture.

o Step 2: Is general (need assumptions on M).
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Example: Mixture of Independent Gaussians

Dataset X € RV*" with iid rows X() = ({7 .. x{").

Model settings:

° xf,i) and x,(i) are conditionally independent Vh # .
()

@ x;’ conditioned to Y is a Gaussian, with known stdev o:

P(Xh|Y = i) ~ N(Mh,ia O')
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Example: Mixture of Independent Gaussians

Dataset X € RV*" with iid rows X() = ({7 .. x{").
Model settings:

° xf(,i) and x,(i) are conditionally independent Vh # .

° x,(,i) conditioned to Y is a Gaussian, with known stdev o:

P(Xh|Y = i) ~~ N(Mh,ia O')

Theorem ([Hsu et al. 2013])

Define the following three quantities:

> N (0) Y T 2
Mo=31 %, M=% =o',

My =3, X0exdex® _ 25 (i gee+ean e +ees M)

Then limy_,oo M; = M; Vi € {1,2,3}

v
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Other estimation procedures.

Similar (but more technical) procedures for many Mixture Models:

@ Mixture of multinomial distributions (Single Topic Model)
[Ruffini, Casanellas, Gavalda (2017)]

o Naive Bayes Models [Anandkumar et al. 2012].

This estimation procedure can be generalized to other latent variable
models (like Hidden Markov Models, Latent Dirichlet Allocation...)

Given estimated I\7Il, M, and M5 we feed an algorithm A to recover

estimated (M, ®)
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A Tensor Decomposition Algorithm: SVTD

An algorithm A
.A(Ml, Mz, M3, k) — (M,w)

Assumptions:
@ The centers are linearly independent (M has rank kK < n )

@ At least one feature has different conditional expectations:

E(lY =j) # E(x|Y = h) Vi # h
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A Tensor Decomposition Algorithm: SVTD

Observations (recall: Q = diag(w))
Q@ M, = MQMT by definition.
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A Tensor Decomposition Algorithm: SVTD

Observations (recall: Q2 = diag(w))
Q@ M, = MQMT by definition.
Q Also My = USy UkT = EkEkT with a SVD. Then

MQ> = E O, forsome O : 00" =1,
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A Tensor Decomposition Algorithm: SVTD

Observations (recall: Q2 = diag(w))
Q@ M, = MQMT by definition.
Q Also My = USy UkT = EkEkT with a SVD. Then

MQ> = E O, forsome O : 00" =1,
QO M; .= fozl witi @ pi @ Wi so its r — th slice is:

M3,r = MQ%diag((:ur,lv ~”7/1'r,k))Q%MT
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A Tensor Decomposition Algorithm: SVTD

Observations (recall: Q2 = diag(w))
Q@ M, = MQMT by definition.
Q Also My = USy UkT = EkEkT with a SVD. Then

MQ> = E O, forsome O : 00" =1,
QO M; .= fozl witi @ pi @ Wi so its r — th slice is:

M3,r = MQ%diag((:ur,lv ~”7/1'r,k))Q%MT

© For each r

H, = EfMs (E] )" = Odiag((ttr1, s 11r,4)) O
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A Tensor Decomposition Algorithm: SVTD

Observations (recall: Q2 = diag(w))
Q@ M, = MQMT by definition.
Q Also My = USy UkT = EkEkT with a SVD. Then

MQ> = E O, forsome O : 00" =1,
QO M; .= fozl witi @ pi @ Wi so its r — th slice is:

M3,r = MQ%diag((:ur,lv ~”7/1'r,k))Q%MT

© For each r

H, = EfMs (E] )" = Odiag((ttr1, s 11r,4)) O

© The singular values of H, are the r — th row of M.
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A Tensor Decomposition Algorithm: SVTD

Algorithm
Q Take as input (My, My, M3, k)
@ Decompose My as M, = EkE,j—

@ Calculate
H, = E[Ms (E])f

@ Recover the r — th row of M as the Singular Values of H,.

© Recover w solving Mw = M;

Reference: A new Spectral Method for Latent Variable Models
[Ruffini, Casanellas, Gavalda (2017)]

Matteo Ruffini (UPC) Tensor Decomposition for Healthcare November 5, 2017

18 / 36



SVTD - Perturbation Theorem

SVTD(My, My, M3, k) — (M,w)

Small perturbations on the input — Small perturbations on the output.

SVTD(My, My, M3, k) — (M, &)
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SVTD - Perturbation Theorem

SVTD(My, My, M3, k) — (M,w)

Small perturbations on the input — Small perturbations on the output.

Theorem ([Ruffini, Casanellas, Gavalda (2017)])
If [|My — My||F < €,||M3s — Ms||g < €, then, for sufficiently small e,

IM — M||r < Cie + O(Coe?)

for some C; and C, depending on the model parameters.
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Putting it all together

© Take a dataset X, with rows sampled from a given mixture model.
@ Estimate the moment tensors /\7]1, I\712, M3.

@ Retrieve estimated (M, ).

@ Optionally, use EM to improve the obtained (M, ).

© Use Bayes’ theorem to cluster the rows of X.
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mixture of independent Bernoulli

In some cases we don't know how to directly estimate My, Mo, M3

X a dataset with rows &~ mixture of independent Bernoulli.

Open Problem: how to efficiently estimate Mo, M3?
X — M27 M3
?

(the issue are the diagonal entries...)
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A work-around: the three views trick (Idea)

Split the observables in three views:

M,
X0 = (xf'), . ,X((,;),X‘S;)Jrl, .. ,x§;)+db,X§;)erb+1,...,xsngb+dc), M = M,

c

Xt X0 x40
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A work-around: the three views trick (Idea)

Split the observables in three views:

X0 = (xf'), . ,X((i;),X‘SIa)_'_l, . ,x‘(,)

Xt X0 x40

i (1 (i) _
oy Xy tdy 10 Xy rdyra ) M= | Mo

M,

c

Estimate subtensors of Mo, Ms. [Anandkumar et al., 2014]

Forj=a,b,c
M; 2 == M; diag(w) M,
Mz =i wind @ pd @ pd

Decompose them to get M;

Get M by concatenation.
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Experiments - Mixture of independent Bernoulli

—— SVID+EM

— K-Means

— scsig

— scilin
PcA

%
J

Adj. Rand. Score
°
2

s o
g 2

06 A ! / \
04 / 04
02 V 02

20 )

1000 2000 3000 4000 5 10 15 20 25 30 60 80 100
N k d

Experiment: generate a synthetic dataset and cluster its rows with SVTD
and with k-means, spectral clustering and PCA clustering.

Accuracy metric: Adjusted Rand Index. It is 1 if the clustering is perfect,
0 if it is bad (like random labeling).
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Clustering Patients with

Tensor Decomposition
[Ruffini, Gavalda, Limén (2017)]

Matteo Ruffini (UPC) Tensor Decomposition for Healthcare November 5, 2017 24 / 36



Source: Servei Catala de la Salut.
Dataset Diagnostics of patients admitted to the hospitals in 2016.
Data format Each row is a visit: up to 10 diagnostics in ICD-9 format.

Two subset datasets
© Patients having diagnostic 428 in the ICD-9 code (Heart Failure).

@ Patients with serious diseases to be treated it top hospitals.

Objective:
@ To create meaningful clusters of patients in each dataset.

@ To visualize the key characteristics of each cluster.
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Modeling strategy

Convert each dataset in a patient-disease matrix:

Disease 1 Disease 2 Disease 3

Patient 1 1 1 0
Patient 2 0 1 1
Patient 3 1 0 1
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Modeling strategy

Convert each dataset in a patient-disease matrix:

Disease 1 Disease 2 Disease 3

Patient 1 1 1 0
Patient 2 0 1 1
Patient 3 1 0 1

Data are modeled as mixture of independent Bernoulli variables

o Latent state — Medical status of a patient.
@ Observed diseases depend on the patient status.

@ Once in a status, diagnostics are independent.
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Modeling strategy

We have a mixture of independent Bernoulli:
© Recover (M, ).
@ Improve the estimated (M, &) with EM.
© Cluster the rows of X into k clusters.

© Plot the results.

The number of clusters is manually set as an external parameter,
(from expert’s considerations).
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Details of the Datasets

Heart Failure Dataset
e N = 23082 (23082 individual patient records).

@ All the patients in the dataset have a Heart Failure as a diagnostic.
@ k =5 clusters.

“Tertiary” Dataset
@ N = 16311 individual patient records.

@ k = 6 clusters.
In both cases n = 696 registered diagnostics (columns of the datasets).
Matteo Ruffini (UPC)
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Visual patterns: Heat-maps

Heat-maps of the two datasets:

Heart Failure Dataset Terciary Dataset

Patient
Patient

0 5 10 15 20 25 30 35
Disease

0 5 10 15 20 25 30 35
Disease

o Black dots: diagnostics
@ Background color: clusters
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Relevance

Heat-maps — patterns in the clusters.
What there is inside the patterns?
Find the relevant diagnostics for each cluster.

Relevance:

relevance(i, j) = Mog(ui ) + (1 — \) |0g(k'u#)

h=1 Mi,h%h

where Hij = P(X,' = 1|Y :_])

@ High relevance: more frequent in a cluster than in the full dataset.

@ Low relevance: low/high frequency everywhere.
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Heart Failure Dataset - Content of the clusters

Cluster 1:
Hypertension,
Tachycardia,
Hypercholesterolemia,
Diabetes mellitus,
Obesity

Cluster 2:
Diabetes mellitus,
Coronary atherosclerosis,
Atherosclerosis aorta

Metabolic issues

Cluster 3:
Pulmonary hypertension,
Diseases tricuspid valve,
Mitral valve disorders,
Hypertensive heart
disease

Pre-existing heart disorders

Cluster 4:
Hypertensive chronic,
kidney disease,
Chronic kidney disease,
Acute kidney failure,
Diabetes mellitus

Cluster 5:
Streptococcus infection,
Urinary tract infection,
Kidney failure,
Hypertensive heart and
chronic kidney disease

Kidney-related issues

Cluster ID:

1 2 3

4 5

Size:

7290 2915 4408 2936 5533
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Heart Failure Dataset — disease-frequency chart

Pulmonary collapse[e~ ] 7] '] 1 [
Chronic kidney disease p----+---4 |—#--o & 1 —e 4 -
Diabetes mellitus |—e-----+ — >3 1 teid —eod
Malignant essential hypertension e e jeiod poiod
Mitral valve disordersf#-:4 e -1 e -4 |
Coronary atherosclerosis|4---+ |—#-{ & {1 ] e
Hypertensive chronic kidney diseasep - p-od p 1 & -
Pure hypercholesterolemia|—--+ —4-{ & 1 poid i
Acute kidney failurejp---4 (-] @ { 1 e
Tracheostomy complicationfe-i-{ - |& 1 fe i d e
Hyperosmolality and/or hypernatremiafe--—---+ f&-- | { e e
Endomyocardial fibrosisf¢-----4 (- e 1 e i d e i
Simple chronic bronchitis|e----4 & |& I
Primary pulmonary hypertensionp-----—--+ o |- (@i (@i
Sideroblastic anemiajg-- - & |& 1 feid e
Iron deficiency anemiaje-—+ | | 1 e i d |l i
Atrioventricular block |e 4 @ q e 1 e d le i
Obesity|#- 4 [ & 1 o i d lei
Pleurisy jo 1 e q le 1 e d B
Urinary tract infection - £ JESEECRES I { e i

I I I i i
0.0 05 1.00.0 0.5 1.00.0 0.5 1.00.0 05 1.00.0 0.5 1.0

Disease Frequency
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Cluster
Neoplasm of
rectosigmoid junction,
Neoplasm of lung,
Neoplasm lymph-nodes
of head, face, neck

Neoplasms

Cluster 1:
Postmyocardial infarction
syndrome,
Coronary atherosclerosis,
Hypercholesterolemia,
Hypertension

Cluster 2:
Myocardial infarction,
Cor. Atherosclerosis,
Drug/Alcohol abuse,
Hypertension,
Hypercholesterolemia

Cluster 6:
Diseases tricuspid valve,
Pulmonary hypertension,
Congestive heart failure,
Mitral valve disorders

Serious heart issues

Kidney Issues (infarction/Dialysis)

“Tertiary” Dataset - Content of the clusters

Cluster 3:
Hypertensive kidney dis.,
Chronic kidney disease,
Cor. Atherosclerosis,
Diabetes,
myocardial infarction

Cluster 5:
Chronic kidney disease,
Hypertensive chronic
kidney disease,
kidney disease
Urinary tract infection

Cluster ID:

1

2 3

4

5 6

Size:

4892 3982

1043 3133 819 2442
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“Tertiary” Dataset— disease-frequen

Coronary atherosclerosis ——e - 1 e’

Acute myocardial infarction p g —e o 1 i

Malignant essential hypertension + — 4 P {4 Feid

Pure hypercholesterolemia % —e | —e 1 e

Diabetes mellitus |—4 - |- —& 1 le i

Mitral valve disordersf¢ - |& 1 e 1 e

Paroxysmal supraventricular tachycardia (¢ e 4 e {1 +—e
Congestive heart failure jp 4 e 4 e A 1 e

Drug/Alchool Abuse -4 4 e e - 1 o

Chronic kidney disease 4 F 4 g P S

Postoperative shock p 4 peid peiid teedid ] feeied

Postmyocardial infarction syndrome ¢ 4P P S L e Y
Malignant neoplasm of rectosigmoid junction p 4 poied piid e B d peieo
Pulmonary collapse p 4 g 4 pd ] e 1 lei-4

Mechanical complication of cardiac device p 4 peid peetoed petod leeetd et
Hypertensive chronic kidney diseasep---:-- p-- * P *
Nervous system complicationp - p 4 P e 1 ] e

Acute kidney failurep -+ p EEET SHEEE I 1 feieod ei

Atrioventricular block -4 et leid poiod poid le e

Comag = B P @ ko P

Obesity (¢ - e 1 1 p A p A #»

i i i i i i
0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Disease Frequency
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