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Methods of Moments in Statistics and Machine Learning

The method of moments was introduced by Pearson in the 1890’s.

Estimates the parameters of a model by solving equations that relate the moments of the data
with model parameters.

X ∼ pθ → E[f (X )] = g(θ)

In the last decade has been used in machine learning to obtain PAC-learning algorithms for topic
models, hidden Markov models, mixtures of Gaussians, etc.

This Paper

Introduce improved methods of moments for topic models.

Experimentally validate their performance against traditional learning methods (e.g. Gibbs
Sampling).
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Agenda

1 Topic Models and Method of Moments.

2 Our Method.

3 Experiments.
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The Single Topic Model

A generative process for texts:

We have k latent topics.

A text only deals with a unique topic i with probability ωi : P[Topic = i ] = ωi .

Given the latent topic, all the words of a text are sampled from a discrete distribution with
parameter µi ∈ Rd :

P[Sample word j |topic = i ] = (µi )j

Notation:

d vocabulary size.

xj one-hot encoded jth word of a document.

Parameters:

The topics M = [µ1, ..., µk ] ∈ Rd×k .

Weights ω = (ω1, ..., ωk) ∈ Rk .
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Ruffini, Casanellas, Gavaldà (UPC) Methods of Moments for Topic Models 4 / 30



The Single Topic Model

A generative process for texts:

We have k latent topics.

A text only deals with a unique topic i with probability ωi : P[Topic = i ] = ωi .

Given the latent topic, all the words of a text are sampled from a discrete distribution with
parameter µi ∈ Rd :

P[Sample word j |topic = i ] = (µi )j

Notation:

d vocabulary size.

xj one-hot encoded jth word of a document.

Parameters:

The topics M = [µ1, ..., µk ] ∈ Rd×k .

Weights ω = (ω1, ..., ωk) ∈ Rk .
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Latent Dirichlet Allocation

A generative process for texts:

We have k latent topics.

A text deals with a multitude of topics, sampled from a Dirichlet distribution.

First, you sample the topic proportions for the text

h ≈ Dirichlet(ω)

Then you sample the latent topic of each word:

P[Topic i ] = (h)i

Last, you sample the word, depending on its topic:

P[Sample word j |Topic = i ] = (µi )j

Parameters:

The topics M = [µ1, ..., µk ] ∈ Rd×k

Weights ω = (ω1, ..., ωk) ∈ Rk
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Learning a Topic Model

From an iid sample

X = {x (1), ..., x (n)}, x (i) = {x (i)
1 , x

(i)
2 , x

(i)
3 , ...}

We want to recover the parameters of the model:

Single Topic Model:
(µ1, ..., µk , ω)

Latent Dirichlet Allocation:
(µ1, ..., µk , ω)

Likelihood-based methods: (EM, sampling, variational methods)

Either very slow or poor guarantees.
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Spectral Method of Moments [Anandkumar et al., (2014)]

Applicable to any model admitting a parametrization in terms of centers and weights:

M = [µ1, ..., µk ] ∈ Rd×k , ω = (ω1, ..., ωk) ∈ Rk

1 Find (model-dependent) estimators of the moments: M̂1(X ), M̂2(X ), M̂3(X )

E[M̂1] = M1 =
k∑

i=1

ωiµi ∈ Rd

E[M̂2] = M2 =
k∑

i=1

ωiµi ⊗ µi ∈ Rd×d

E[M̂3] = M3 =
k∑

i=1

ωiµi ⊗ µi ⊗ µi ∈ Rd×d×d

2 Retrieve an estimate of model parameters (µ̂1, ..., µ̂k , ω̂) with tensor decomposition:

M̂1 ≈
k∑

i=1

ω̂i µ̂i , M̂2 ≈
k∑

i=1

ω̂i µ̂i ⊗ µ̂i , M̂3 ≈
k∑

i=1

ω̂i µ̂i ⊗ µ̂i ⊗ µ̂i
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Pros and Cons

Pros

Fast – linear in the sample size.

Reduce the model-learning task to a tensor decomposition problem.

PAC-style guarantees.

It is the ideal setting for topic models.

Improvement Points:

The sample complexity of moment estimators for topic models can be improved.

Tensor decomposition algorithms either slow or not robust.
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Our Paper

Provide improved moment estimators for the Single Topic Model and LDA.

Provide a new tensor decomposition algorithm, fast and robust to perturbations.

Test the proposed method on real data.
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Moment Estimators for Topic Models

Moment Estimators:

From an iid sample X = {x (1), ..., x (n)}, x (i) = {x (i)
1 , x

(i)
2 , x

(i)
3 , ...}:

E[M̂1] = M1 =
k∑

i=1

ωiµi , E[M̂2] = M2 =
k∑

i=1

ωiµi ⊗ µi , E[M̂3] = M3 =
k∑

i=1

ωiµi ⊗ µi ⊗ µi

Single Topic Model:

[Anandkumar et al. (2012a)]

M̂1 =
n∑

i=1

x
(i)
1

n
, M̂2 =

n∑
i=1

x
(i)
1 ⊗ x

(i)
2

n
, M̂3 =

n∑
i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3

n

[Zou et al. (2013)]: For each document, uses all the possible triples, in closed form.
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Moment Estimators for Topic Models

Our proposal:

Start from the estimators of [Anandkumar et al. (2012a)]

M̂1 =
n∑

i=1

x
(i)
1

n
, M̂2 =

n∑
i=1

x
(i)
1 ⊗ x

(i)
2

n
, M̂3 =

n∑
i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3

n

Extend them to consider all the possible triples, giving more weight to longer documents.

Intuition: longer documents have a less noisy signal.

In the Paper:

We provide sample complexity bounds for the proposed estimators.

We show that the proposed estimators have a better sample complexity.

We provide a variation of these estimators for LDA.
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Moment Estimators for Topic Models

Experiment:

For various sample sizes n:

Generate a dataset as the Single Topic Model with parameters (µ1, ..., µk , ω).

Calculate the moments with our estimators and with those from [Zou et al. (2013)].

For each estimator calculate

Err = ‖
k∑

i=1

ωiµi ⊗ µi − M̂2‖

Err = ‖
k∑

i=1

ωiµi ⊗ µi ⊗ µi − M̂3‖

Ruffini, Casanellas, Gavaldà (UPC) Methods of Moments for Topic Models 12 / 30



Moment Estimators for Topic Models
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Our Paper

Provide improved moment estimators for the Single Topic Model and LDA.

Provide a new tensor decomposition algorithm, fast and robust to perturbations

Test the proposed method on real data.
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Tensor Decomposition for Methods of Moments

Objective You have: M1,M2,M3.

You want to obtain: M = [µ1, ..., µk ] and ω such that:

M1 =
k∑

i=1

ωiµi , M2 =
k∑

i=1

ωiµi ⊗ µi , M3 =
k∑

i=1

ωiµi ⊗ µi ⊗ µi

If the moments are empirical (perturbed), returns (M̂, ω̂) close to (M, ω).

A Scan of the Literature..

Most used methods have no guarantees on the decomposition – ALS [Kolda et al.(2009)].

Fast methods are sensitive to perturbations – SVD method [Anandkumar et al. (2012a)].

Robust methods are slow – TPM is O(k5) [Anandkumar et al., (2014)].

We need something fast and robust.
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A Tensor Decomposition Algorithm: SVTD

You have: M1,M2,M3, k.

You want to obtain: M = [µ1, ..., µk ] and ω such that:

M1 =
k∑

i=1

ωiµi , M2 =
k∑

i=1

ωiµi ⊗ µi , M3 =
k∑

i=1

ωiµi ⊗ µi ⊗ µi

Theorem

Let M3,r ∈ Rd×d be the r -th slice of M3 and mr the r -th row of M.

There exists a projection of M3,r to a matrix Hr ∈ Rk×k whose singular values are mr .

Algorithm

Loop r : 1→ d

Find Hr properly projecting M3,r to Rk×k (whitening step).
Find the r -th row of M as the singular values of Hr .
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SVTD - Considerations

Remarks:

With no perturbations on the moments, we get the exact model parameters.

The row i of M is the singular values of Hi , which are robust to perturbations.

Time complexity: O(d2k + k3 + d3k) – can get to O(dk2n) with optimized implementations.

Comparison with Other Methods

SVD method [Anandkumar et al. (2012a)]: similar to SVTD but based on singular vectors.
We expect it to be less robust to perturbations.

TPM [Anandkumar et al., (2014)] has a worse dependence on k:
It should be slower for high number of topics.

ALS [Kolda et al.(2009)]: no whitening – i.e. should be slower.
No guarantees on the decomposition.
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Experiments

For various sample sizes n:

Generate a dataset as the Single Topic Model with parameters (µ1, ..., µk , ω).

Calculate the moments with the proposed estimators.

Perform tensor decomposition with various methods.

Calculate the average running time for each method.

Calculate the decomposition error:

Err =
k∑

i=1

‖µi − µ̂i‖2
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Experiments

(a) Running Time (b) Decomposition Error
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Our Paper

Provide improved moment estimators for the Single Topic Model and LDA.

Provide a new tensor decomposition algorithm, fast and robust to perturbations

Test the proposed method on real data.
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Objective

We have:

An end-to-end algorithm A to learn from data topic models:

A : X → (µ1, ..., µk , ω)

Good performance in comparison with other methods of moments.

We want to:

Test our approach on real data.

Compare it with state-of-the-art methods, i.e. Sampling methods.

Data:

US presidents’ State of the Union Addresses.

n = 65 speeches, d = 1184 words.
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Evaluation Method

For various values of the number of latent topics k :

Learn a Single Topic Model and an LDA with k topics with the proposed approach.

Learn an LDA with k topics with Gibbs Sampling [Griffiths and Steyvers (2004)].

For each learned model:

Calculate the coherence of the retrieved topics:

Coherence(µ) =
L∑

j=2

j−1∑
i=1

log
D(wi ,wj) + 1

D(wi )

Calculate the running time needed to learn the model.
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Results I: quantitative analysis
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Results II: qualitative analysis

Keep the LDA model.

Select a value of k for which we have a high coherence.

For each speech, visualize how much it deals with the various topics.
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Results II: qualitative analysis

Topic 2: college, affordable, children, child.

Topic 7: Vietnam, south, tonight, north, conflict.

Topic 15: Iraq, terrorists, terrorist, seniors.

Topic 17: soviet, military, peace, disarmament.

Topic 18: space, civil, defense, Latin.
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