Hierarchical Methods of Moments

Matteo Ruffini¹ Guillaume Rabusseau² Borja Balle³ ¹Universitat Politècnica de Catalunya, ²McGill University, ³Amazon Research, Cambridge

Methods of Moments for Latent Variable Models

Task: to learn **latent variable models**. Take a model with parameters

 $M = [\mu_1, ..., \mu_k] \in \mathbb{R}^{d \times k}, \omega \in \Delta^{k-1}$ From an iid sample, estimate the *moments:* $M_1 := \sum_{i=1}^k \omega_i \ \mu_i \in \mathbb{R}^d \qquad (1)$ $M_2 := \sum_{i=1}^k \omega_i \ \mu_i \otimes \mu_i \in \mathbb{R}^{d \times d} \qquad (2)$

SIDIWO: interpretation

SIDIWO: Simultaneous Diagonalization based on Whitening and Optimization.

- Use the whitening matrix to reduce the dimension of the slices of M₃:
 H_r = E[†]_lM_{3,r}(E[†]_l)[⊤] ∈ ℝ^{l×l}
- Find an orthogonal matrix O that tries to simultaneously diagonalize all the H_r .

Hierarchical Method of Moments

When l = 2, SIDIWO returns $[\tilde{\mu}_1, \tilde{\mu}_2]$; each pseudocenter synthesizes some of the true centers. **Define** the set of centers approximated by $\tilde{\mu}_j$:

 $C_j = \{\mu_i : \mu_i \text{ is approximated by } \tilde{\mu}_j\}$

Idea: use the pseudocenters to bipartite a dataset, via MAP assignment on each sample $x^{(i)}$:

 $M_{3} := \sum_{i=1}^{k} \omega_{i} \ \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \in \mathbb{R}^{d \times d \times d}$ (3) Parameters with tensor decomposition: $\mathcal{TD}(M_{1}, M_{2}, M_{3}, k) \to (M, \omega)$ Advantages:

- Single pass through the data.Always run in polynomial time.
- Provable guarantees of optimality.

Example: single topic model

μ_i are the topics, ω the topic proportions.
Let X_s be the s - th word of a document (one-hot encoded); we have:

 $M_1 = \mathbb{E}[X_s], \quad M_2 = \mathbb{E}[X_s \otimes X_t]$ $M_3 = \mathbb{E}[X_r \otimes X_s \otimes X_t]$

State of the art

Tensor decomposition for methods of moments: Tensor Power Method [1], SVDbased methods [2], Random-projections [3]... Provably recover a model if structure and number of latent states k are known. No theory for data out of the model. • Return $(\tilde{M}, \tilde{\omega})$ such that $\tilde{M}\tilde{\Omega}^{1/2} = E_l O$.

Assume that data is generated by a model with k states. For $l \leq k$, we have:

(*M̃*, *ω̃*) ∈ ℝ^{(d×l)×l} the output of SIDIWO.
(*M*, *ω*) ∈ ℝ^{(d×k)×k} the parameters of the model generating the data.

Question: how are $(\tilde{M}, \tilde{\omega})$ and (M, ω) related?

Realizable setting

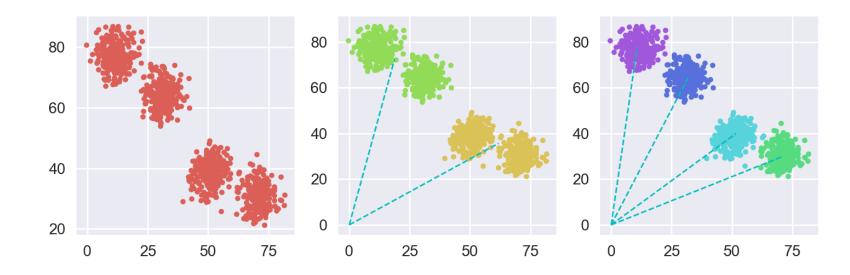
If l = k, then $(\tilde{M}, \tilde{\omega}) = (M, \omega)$ and SIDIWO provably recovers (asymptotically) the parameters of the model.

Misspecified setting

If l < k, we prove, under mild requirements:

 $Cluster(i) = \arg\max_{i} \mathbb{P}[X = x^{(i)} | \tilde{\omega}, \tilde{\mu}_{j}]$

Ideally, points generated by centers in C_j will belong to the cluster with center $\tilde{\mu}_j$, for j = 1, 2. **Recursively iterating**: a *divisive hierarchical clustering algorithm*, with a *hierarchical representation* of our latent variable model.



Hierarchical Topic Modeling

Latent variable model: Single Topic Model.

- True centers $\mu_1, ..., \mu_k$: set of topics.
- Pseudocenters \$\tilde{\mu}_1\$, \$\tilde{\mu}_2\$: generic topics, summing up the concepts of the topics they synthesize.
 More specialized if deeper in the hierarchy.

This paper

SIDIWO: first method of moments with guarantees when number of latent states is unknown.

- In the **realizable setting**, recovers the model generating the data.
- In the misspecified setting, recovers a model that optimally synthesizes the one generating the data.

Application: hierarchical method of moments.

Algorithm 1 SIDIWO

Require: An iid dataset $\mathcal{X} = (x^{(1)}, ..., x^{(n)})$, and the number of latent states l

The columns of *M* are **non-trivial** linear combination of those of *M*; we call them **pseudocenters**.

• Problem (4) is equivalent to $\min_{D \in \mathcal{D}_l} \sum_{i \neq j} \sup_{v \in \mathcal{V}_M} \sum_{h=1}^k \langle d_i, \mu_h \rangle \langle d_j, \mu_h \rangle \omega_h v_h \quad (5)$ with d_1, \dots, d_l rows of a feasible D and $\mathcal{V}_M = \{ v \in \mathbb{R}^k : v = \alpha^\top M, \text{where } \|\alpha\|_2 \leq 1 \}$ maximizing the disjoint support of vectors u_1, \dots, u_l , where

 $u_i = [\langle d_i, \mu_1 \sqrt{\omega_1} \rangle, \dots, \langle d_i, \mu_k \sqrt{\omega_k} \rangle]$

Interpretation: Each pseudocenter tries to be aligned with some of the true centers and orthogonal to the others.

SIDIWO: optimization

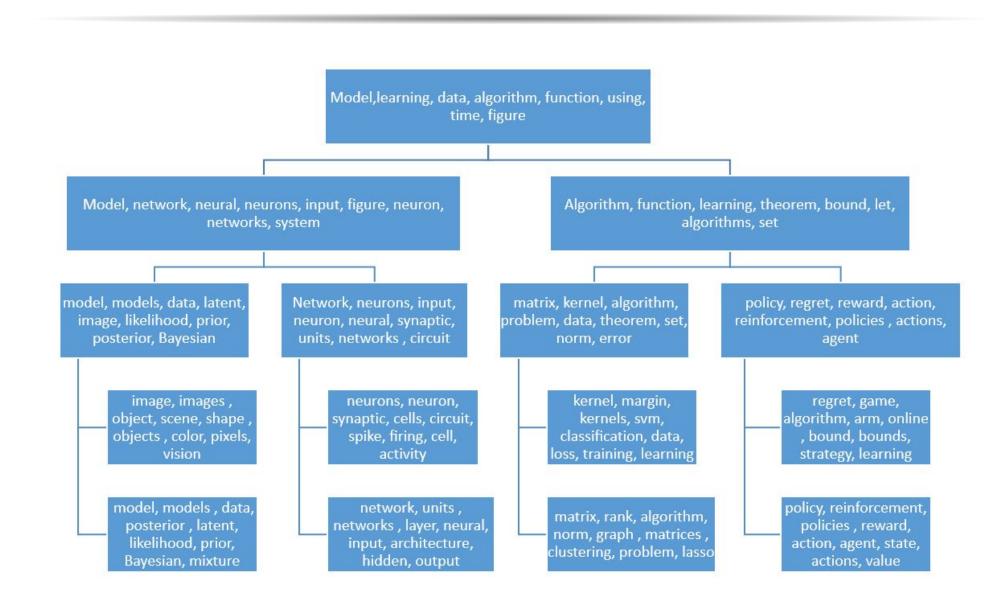
We can rewrite problem (4) as: $\min_{O_l^{\top}O_l = \mathbb{I}_l} \sum_{i \neq j} \left(\sum_{r=1}^d (O_l^{\top} E_l^{\dagger} M_{3,r} (E_l^{\dagger})^{\top} O_l)_{i,j}^2 \right)^{1/2}$ where O_l are orthogonal matrices.

Synthetic Data

	Method		Rand Idx St. dev.	Run. Time
	TPM SVD	0.93 0.52	0.06	1.2 sec. 0.1 sec.
80	Rand. Proj.	0.72	0.06	16 min.
0 1 2 3 4 5 6 7 Topics	SIDIWO	0.98	0.01	0.4 sec.

Generate single topic model data, do hierarchical clustering and study accuracy. Comparison with existing flat methods of moments.

Nips Papers 1987-2015



Estimate M₁, M₂ and M₃.
 l-components SVD: M₂ ≈ U_lS_lU_l^T.
 Get the whitening matrix: E_l = U_lS_l^{1/2}.
 Define the set of feasible joint-diagonalizers:

 $\mathcal{D}_l = \{ D : D = (E_l O_l)^{\dagger} \text{ for } O_l \text{ s.t. } O_l O_l^{\top} = \mathbb{I}_l \}$

5: Find the matrix $D \in \mathcal{D}_l$ optimizing

 $\min_{D \in \mathcal{D}_l} \sum_{i \neq j} \left(\sum_{r=1}^d (DM_{3,r}D^{\top})_{i,j}^2 \right)^{1/2}$ 6: Find $(\tilde{M}, \tilde{\omega})$ solving $\begin{cases} \tilde{M}\tilde{\Omega}^{1/2} = D^{\dagger} \\ \tilde{M}\tilde{\omega}^{\top} = M_1 \end{cases}$ where $\tilde{\Omega} = diag(\tilde{\omega})$ 7: return $(\tilde{M}, \tilde{\omega})$

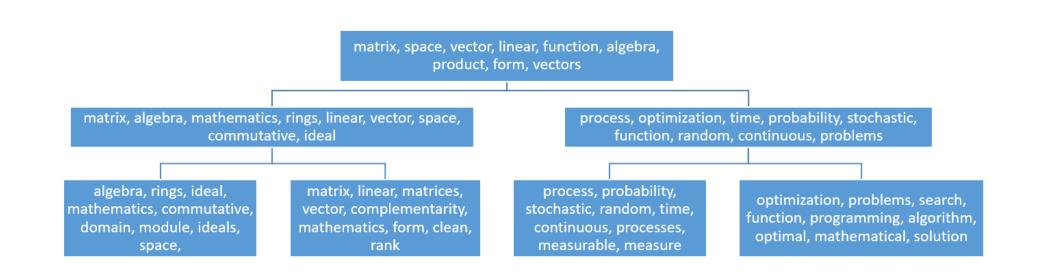
- If $2 < l \leq k$ SIDIWO can be optimized with Jacobi's method [4].
- (4) If l = 2 use the fact that the orthogonal matrix O_2 has the form

$$O_2(a) = \begin{bmatrix} \sqrt{1-a^2} & a \\ -a & \sqrt{1-a^2} \end{bmatrix} , \ a \in [-1,$$

Τ

and optimize w.r.t. a by griding on [-1, 1].

Wikipedia Mathematical Pages



A. Anandkumar et al, (2014), Tensor decompositions for learning latent variable models.
 A. Anandkumar et al, (2012), A method of moments for mixture models and HMM.
 V. Kuleshov et al, (2016), Tensor factorization via matrix factorization.
 J. Cardoso et al, (1996), Jacobi angles for simultaneous diagonalization.