

Clustering Patients with Tensor Decomposition

Matteo Ruffini¹ Ricard Gavaldà¹ Esther Limón² ¹Universitat Politècnica de Catalunya, Barcelona, Spain,²Institut Català de la Salut

Objective

Task: to segment patients in groups with similar clinical profiles. Motivation:

Similar patients → Similar cares.
 Find recurrent comorbidities.
 Assigning and planning resources.

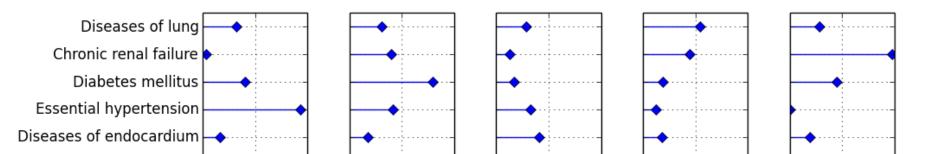
Mixture Model Clustering

Clustering: given a dataset, assign each sample to the most likely mixture component.

Given the **parameters of the mixture**:

 $\omega_j = \mathbb{P}(Y = j)$ $\mu_i = \mathbb{E}(X|Y = j), \quad M = [\mu_1|, ..., |\mu_k] \in \mathbb{R}^{d \times k}$ and a sample $X = (x_1, ..., x_d),$ **Experiment: Heart Failure dataset**

Patients affected by heart failure, having a diagnostic 428 (heart failure) in the ICD-9 code.



The data

All hospitalizations in Catalonia, Spain, in 2016. Each row is a patient's visit containing up to 10 ICD-9 diagnostics of the patient. Data can be converted into a binary matrix \mathcal{X} : $(\mathcal{X})_{i,j} = 1$ if patient *i* has disease *j*.

D	isease 1	Disease 2	Disease 3	•••
Patient 1	1	1	0	•••
Patient 2	0	1	1	• • •
•••	• • •	•••	• • •	• • •

Objective: cluster the rows of the matrix. **Challenges**: sparse and high dimensional data.

State of the art

the clustering rule is

$$Cluster(X) = argmax_{j=1,...,k}(\mathbb{P}(Y = j|X))$$

where, for mixture of independent Bernoulli

$$\mathbb{P}(Y = j | X) \propto \omega_j \prod_{i=1}^{d} (\mu_j)_i^{x_i} (1 - (\mu_j)_i)^{1-x_i}$$

We need the mixture parameters, (M, ω) .

Learning mixture parameters: method of moments

Method of moments

A general approach from [5]:

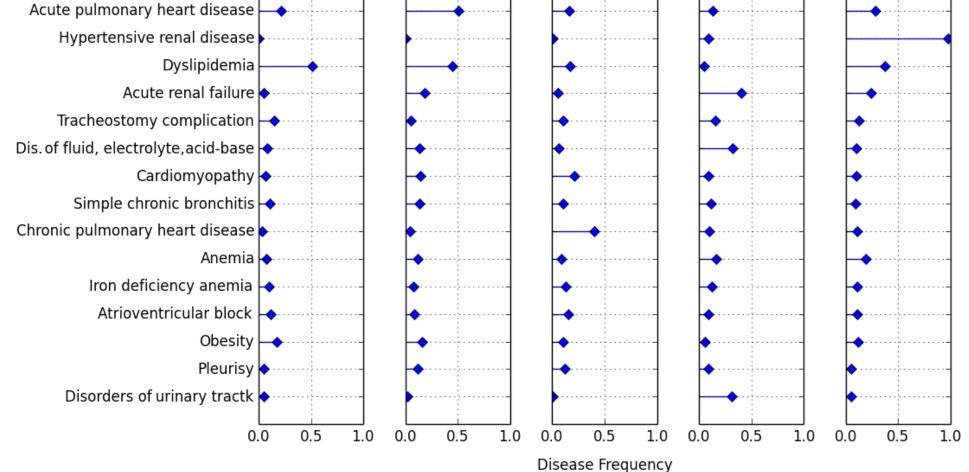
• Estimate from data the *moments*:

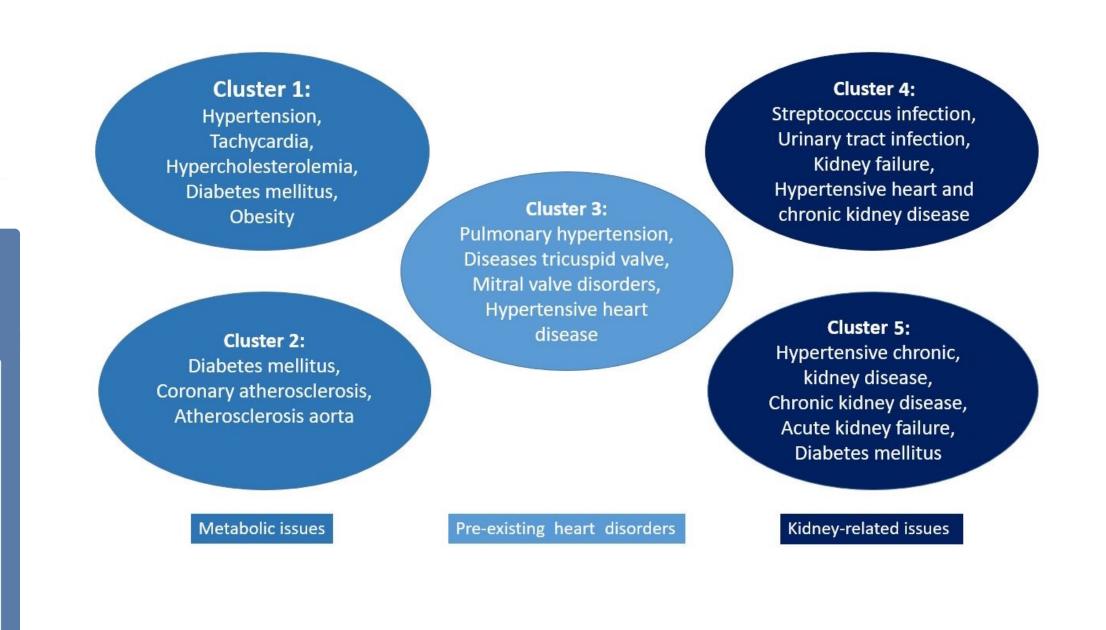
$$M_{1} := \sum_{i=1}^{k} \omega_{i} \ \mu_{i} \in \mathbb{R}^{d}$$

$$M_{2} := \sum_{i=1}^{k} \omega_{i} \ \mu_{i} \otimes \mu_{i} \in \mathbb{R}^{d \times d}$$

$$M_{3} := \sum_{i=1}^{k} \omega_{i} \ \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \in \mathbb{R}^{d \times d \times d}$$

$$M_{3} := \sum_{i=1}^{k} \omega_{i} \ \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \otimes \mu_{i} \in \mathbb{R}^{d \times d \times d}$$





Experiment: "Tertiary" Dataset

Distance-based clustering methods

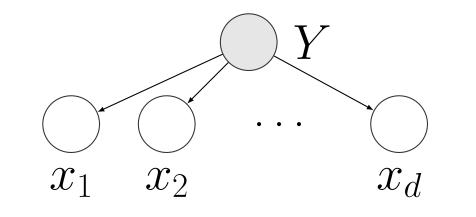
[1](k-means, k-medioids, single linkage): poor performances on high dimensional sparse data; manual definition of a distance function.

Tensor factorization for patients phenotyping[2, 3, 4] *(Limestone, Marble, Rubik...)*: require many sources of information; no generative model is assumed.

Proposed approach: mixture models

Data is modeled as a mixture of independent Bernoulli variables (Naïve Bayes model)

- Latent state \rightarrow Medical status of a patient.
- Observed diseases depend on patient status.
- Once in a status, diagnostics are independent.



 Obtain mixture's parameters with tensor decomposition on the moments:

 $\mathcal{TD}(M_1, M_2, M_3) \to (M, \omega)$

The decomposition of M₃ constrained to (1) and (2) is unique if M has full rank. There exist methods that, exploiting the structure of the moments, get (M, ω) efficiently.
Improve the obtained parameters with EM.

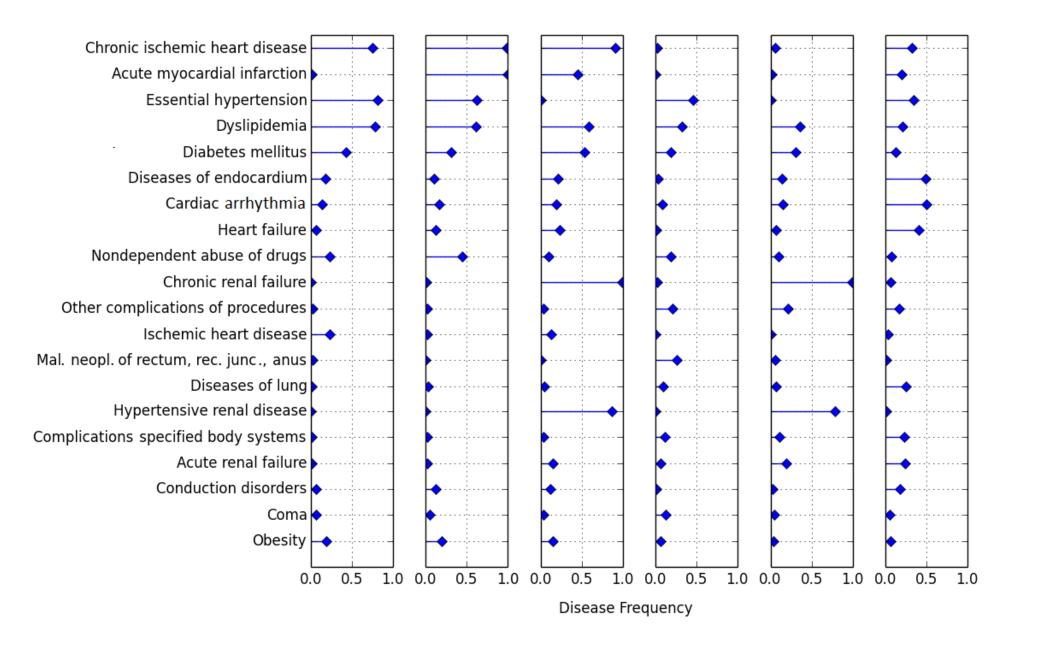
Problem: No easy ways to estimate M_2 and M_3 for a mixture of independent Bernoulli.

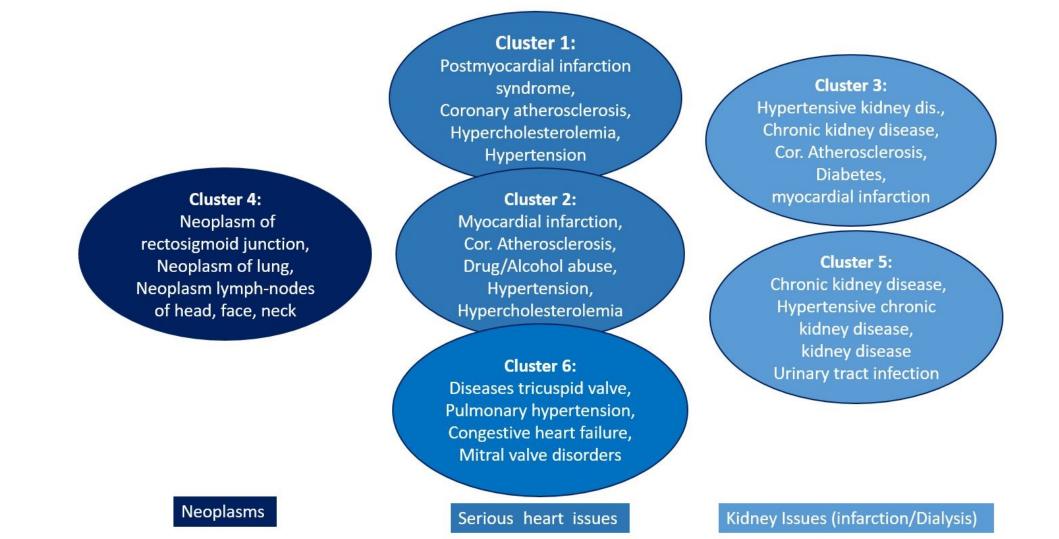
Proposed approach: approximate estimates. Define

$$\tilde{M}_{j}^{(N)} := \sum_{i=1}^{N} \frac{X^{(i) \otimes j}}{N}, \text{ for } j = 1, 2, 3$$

where $X^{(i)}$ are our iid records. We can demonstrate that, for big enough samples, for j = 1, 2, 3

Patients with a serious disease, to be treated in reference hospitals in the area.





Y ∈ [k] is a latent variable.
X = (x₁,..., x_d) are observable, conditionally independent on Y.

Main advantages

- No distance is required.
- Generative model \rightarrow clear interpretation.
- Flexible: works with single sources of data.

 $\Delta_j = ||\tilde{M}_j^{(N)} - \tilde{M}_j||_F$ is small. This means that $\tilde{M}_j^{(N)}$ and \tilde{M}_j are asymptotically close (but not equal, here is the approximation!).

Key idea

• Estimate $\tilde{M}_2^{(N)}$ and $\tilde{M}_3^{(N)}$ (that are **biased**)

• Plug them into a tensor decomposition

algorithm (we used SVTD [6]) to get

 $(M, \tilde{\omega})$ (biased as well)

• Remove the bias with EM.

References

- [1] K. Kshetri, (2011), Modelling patient states in intensive care patients.
- [2] J. Ho et al, (2014), Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization.
- [3] J. Ho et al. (2014), Limestone: High-throughput candidate phenotype generation via tensor factorization.
- [4] Y. Wang et al (2015), Rubik: Knowledge guided tensor factorization and completion for health data analytics.
- [5] A. Anandkumar et al, (2014), Tensor decompositions for learning latent variable models.
- [6] M. Ruffini et al, (2017), A New Spectral Method for Latent Variable Models.