
Clustering Patients with
Tensor Decomposition

Matteo Ruffini 1 Ricard Gavaldà 1 Esther Limón 2
1Universitat Politècnica de Catalunya, Barcelona, Spain, 2Institut Català de la Salut

Objective

Task: to segment patients in groups with
similar clinical profiles.
Motivation:
1 Similar patients → Similar cares.
2 Find recurrent comorbidities.
3 Assigning and planning resources.

The data

All hospitalizations in Catalonia, Spain, in 2016.
Each row is a patient’s visit containing up to 10
ICD-9 diagnostics of the patient. Data can be
converted into a binary matrix X : (X )i,j = 1 if
patient i has disease j.

Disease 1 Disease 2 Disease 3 ...
Patient 1 1 1 0 ...
Patient 2 0 1 1 ...
... ... ... ... ...

Objective: cluster the rows of the matrix.
Challenges: sparse and high dimensional data.

State of the art

Distance-based clustering methods
[1](k-means, k-medioids, single linkage) : poor
performances on high dimensional sparse data;
manual definition of a distance function.
Tensor factorization for patients pheno-
typing[2, 3, 4] (Limestone, Marble, Rubik...):
require many sources of information; no genera-
tive model is assumed.

Proposed approach:
mixture models

Data is modeled as a mixture of independent
Bernoulli variables (Naïve Bayes model)
•Latent state → Medical status of a patient.
•Observed diseases depend on patient status.
•Once in a status, diagnostics are independent.
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•Y ∈ [k] is a latent variable.
•X = (x1, . . . , xd) are observable, conditionally
independent on Y .

Main advantages
•No distance is required.
•Generative model → clear interpretation.
•Flexible: works with single sources of data.

Mixture Model Clustering

Clustering: given a dataset, assign each sample
to the most likely mixture component.
Given the parameters of the mixture:
ωj = P(Y = j)
µi = E(X|Y = j), M = [µ1|, ..., |µk] ∈ Rd×k

and a sample X = (x1, ..., xd),
the clustering rule is
Cluster(X) = argmaxj=1,...,k(P(Y = j|X))

where, for mixture of independent Bernoulli

P(Y = j|X) ∝ ωj
d∏
i=1

(µj)xii (1− (µj)i)1−xi

We need the mixture parameters, (M,ω).

Learning mixture parameters:
method of moments

Method of moments

A general approach from [5]:
•Estimate from data the moments:

M1 := ∑k
i=1ωi µi ∈ Rd (1)

M2 := ∑k
i=1ωi µi ⊗ µi ∈ Rd×d (2)

M3 := ∑k
i=1ωi µi ⊗ µi ⊗ µi ∈ Rd×d×d (3)

•Obtain mixture’s parameters with tensor
decomposition on the moments:

T D(M1,M2,M3)→ (M,ω)
The decomposition of M3 constrained to (1)
and (2) is unique if M has full rank. There
exist methods that, exploiting the structure
of the moments, get (M,ω) efficiently.

• Improve the obtained parameters with EM.

Problem: No easy ways to estimateM2 andM3
for a mixture of independent Bernoulli.

Proposed approach: approximate estimates.
Define

M̃
(N)
j :=

N∑
i=1

X (i)⊗j

N
, for j = 1, 2, 3

where X (i) are our iid records. We can demon-
strate that, for big enough samples, for j = 1, 2, 3

∆j = ||M̃ (N)
j − M̃j||F

is small. This means that M̃ (N)
j and M̃j are

asymptotically close (but not equal, here is the
approximation!).

Key idea

•Estimate M̃ (N)
2 and M̃ (N)

3 (that are biased)
•Plug them into a tensor decomposition
algorithm (we used SVTD [6]) to get
(M̃, ω̃) (biased as well)

•Remove the bias with EM.

Experiment:
Heart Failure dataset

Patients affected by heart failure, having a diag-
nostic 428 (heart failure) in the ICD-9 code.

Experiment: "Tertiary" Dataset

Patients with a serious disease, to be treated in
reference hospitals in the area.
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