A Method of Moments for Latent Variable Models

🗱 Matteo Ruffini 🗱 Marta Casanellas 📓 Ricard Gavaldà

Universitat Politècnica de Catalunya

Motivation

Methods of Moments: a promising tool to learn topic models: *Single Topic Model* [1, 2], *LDA* [3]...

Existing approaches: strong theory, but poor applicability (poor sample complexity or long running times).

Our Proposal: provide improved MoMs able to compete with most used methods to learn topic models (e.g. Gibbs Sampling).

Moment Estimators for the Single Topic Model

- $x^{(j)} \in \mathbb{R}^d$: its entry i counts how many times the word i appears in the document j
- c_j : number of words in document j. **Theorem 1**: for any $h \leq l \leq m$ $(\hat{M}_1)_h := \frac{\sum_{i=1}^n (x^{(i)})_h}{\sum_{i=1}^n x^{(i)}},$

Experiments

Synthetic Data

Generate synthetic data from a single topic model with parameters $(\mu_1, ..., \mu_k, \omega)$; estimate from data the model parameters with various methods. Compare run times and reconstruction error:

 $Err = \sum_{i=1}^{k} \|\mu_i - \hat{\mu}_i\|^2$

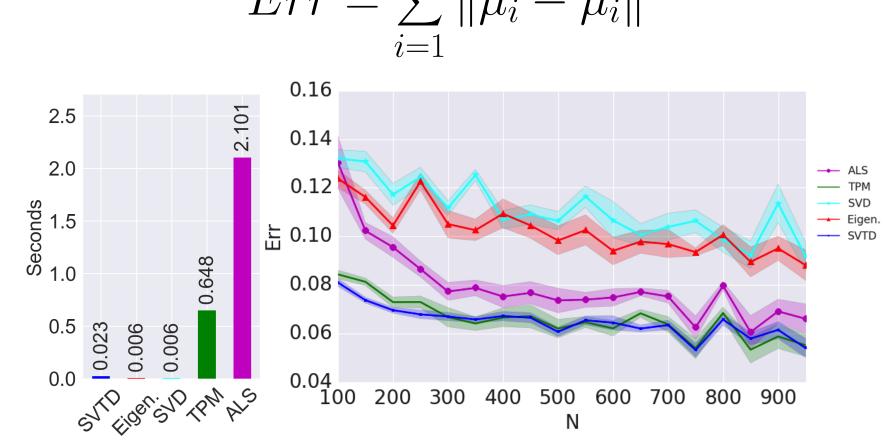
The Single Topic Model

Generative Process for each text:

Draw a topic: Y ∈ [k], with P[Y = j] = ω_j.
Sample all the words of the text from a discrete distribution that depends only on the topic:
P[sampling word h|topic = j] = (μ_j)_h

Model parameters:

• $\mu_1, ..., \mu_k$, the topics (each $\mu_i \in \mathbb{R}^d$). • $\omega = (\omega_1, ..., \omega_k)$, the weights.

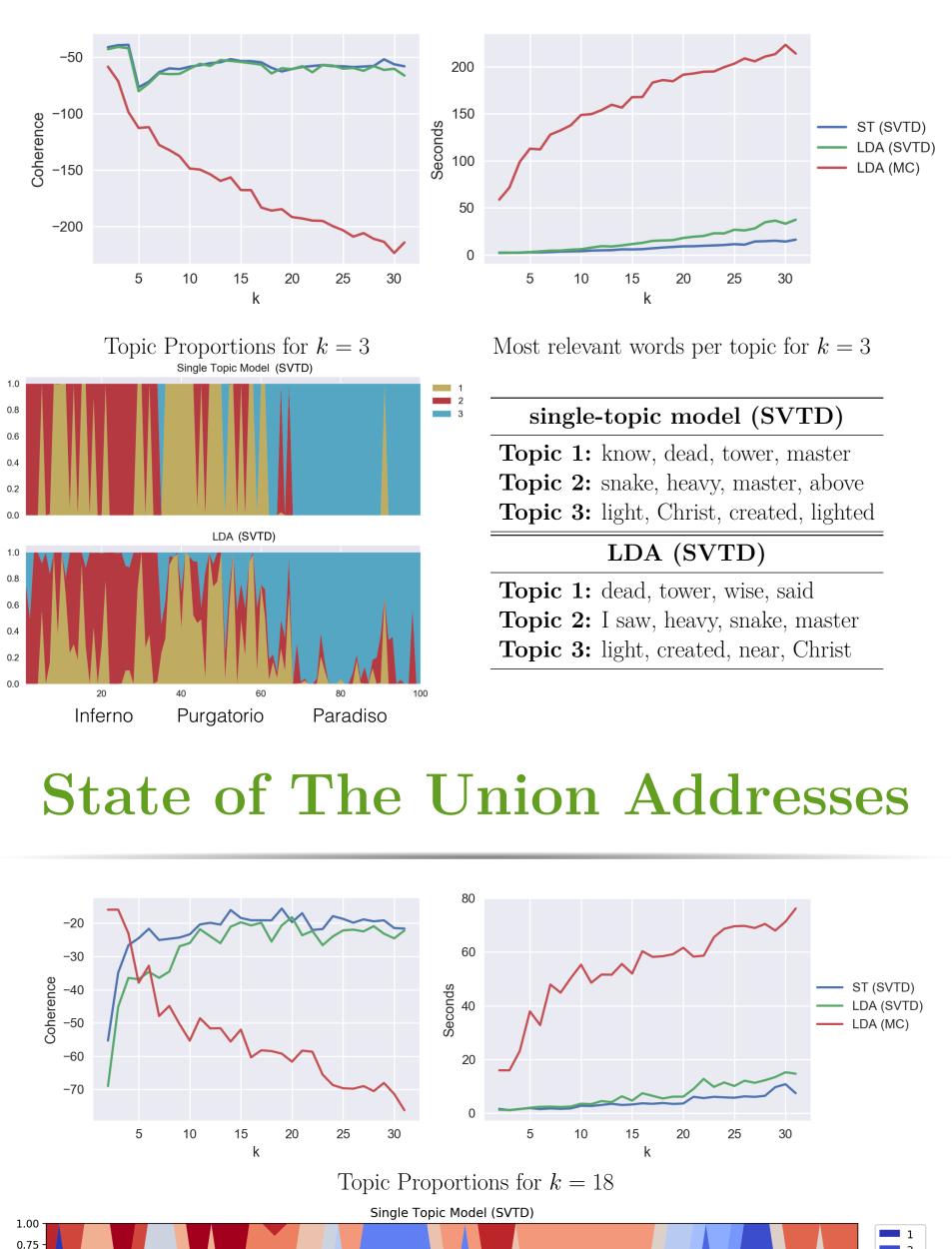

Latent Dirichlet Allocation

Identical to the Single Topic Model, but each text deals with a multitude of topics. Generative Process for each text: $(\hat{M}_{2})_{h,l} := \frac{\sum_{i=1}^{x} c_{i}}{\sum_{i=1}^{n} (x^{(i)})_{h} (x^{(i)} - \chi_{h=l})_{l}}}{\sum_{i=1}^{n} (c_{i} - 1)c_{i}},$ $(\hat{M}_{3})_{h,l,m} := \frac{\sum_{i=1}^{n} (x^{(i)})_{h} (x^{(i)} - \chi_{\neg h < l < m})_{l} (x^{(i)} - 2\chi_{h=l=m})_{m}}{\sum_{i=1}^{n} (c_{i} - 2)(c_{i} - 1)c_{i}}$ satisfy Equations (1), (2) and (3). **Comparison with Other Methods**:

- [1]: gets the moments averaging the outer product between few words of each document.
- [2]: extends [1] using all the available words, giving the same weight to all documents.
- Our approach: extends [2] giving more weight to longer documents.

Remarks:

- In the paper we provide sample complexity bounds for the proposed estimators.
- We prove theoretically and experimentally that we improve the sample complexity of [1, 2].We obtain estimators for LDA applying to


Real Data

Plot running time and *Topic Coherence* for Single Topic Model and LDA learned with **SVTD** and **Gibbs Sampling**.

$$Coherence(\mu) = \sum_{j=2}^{L} \sum_{i=1}^{j-1} \log \frac{D(w_i, w_j) + 1}{D(w_i)}$$

Data: Dante's *Divina Commedia* and *State of The Union Addresses*.

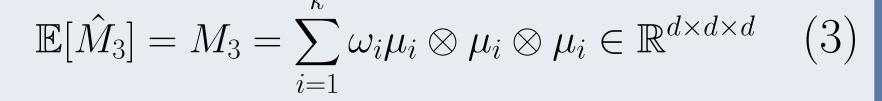
Dante's Divina Commedia

• A vector of topic proportions h is sampled from a Dirichlet distribution $h \approx Dir(\omega)$.

- Each word has a unique latent topic, sampled from a discrete distribution with parameter h.

Model parameters:

μ₁, ..., μ_k, the topics.
ω = (ω₁, ..., ω_k), the Dirichlet parameter.


Method of Moments

Task: to estimate model parameters from data • Find (model-dependent) estimators of the moments: \hat{M}_1 , \hat{M}_2 , \hat{M}_3 $\mathbb{E}[\hat{M}_1] = M_1 = \sum_{i=1}^k \omega_i \mu_i \in \mathbb{R}^d$ (1) $\mathbb{E}[\hat{M}_2] = M_2 = \sum_{i=1}^k \omega_i \mu_i \otimes \mu_i \in \mathbb{R}^{d \times d}$ (2) theorem 1 an approach similar to that of [3].

Tensor Decomposition

Task: to find $(\mu_1, ..., \mu_k, \omega)$ satisfying Equations (1), (2) and (3), given M_1, M_2, M_3 and k. **Theorem 2**: Let $M = [\mu_1|...|\mu_k] \in \mathbb{R}^{d \times k}$. Then SVTD provably returns the model parameters.

Singular Value based Tensor Decomposition Require: M_1 , M_2 , M_3 , k1: k components SVD: $M_2 = U_k S_k U_k^{\top}$ 2: Get the whitening matrix $E = U_k S_k^{1/2}$. 3: Select a feature r and let $M_{3,r}$ be the r-th slice of M_3 4: Define $H_r := E^{\dagger} M_{3,r} E^{\dagger^{\top}}$ 5: Let O be the Singular Vectors of H_r . 6: for $i = 1 \rightarrow d$ do 7: Compute $H_i := E^{\dagger} M_{3,i} E^{\dagger^{\top}}$ 8: Get the *i*-th row of M from the diagonal of $O^{\top} H_i O$. 9: end for 10: Obtain ω solving Eq. (1). 11: Return (M, ω)

 Retrieve an estimate of model parameters with tensor decomposition:

 $\mathcal{TD}(\hat{M}_1, \hat{M}_2, \hat{M}_3) \rightarrow (\hat{\mu}_1, ..., \hat{\mu}_k, \hat{\omega})$

This paper

- Improve MoMs for topic models, providing.- Moment estimators with improved sample complexity.
- **SVTD**: a new, fast and robust tensor decomposition algorithm.

Remarks

- The rows of M are the singular values of H_i , which are robust to perturbations.
- Time complexity: $O(d^2k + k^3 + d^3k)$ $(O(dk^2n)$ with optimized implementations).

Comparison with Other Methods

- SVD method [1]: similar to SVTD but based on singular vectors.
- *TPM* [4]; worse dependence on k (i.e. slower for high number of topics).
- ALS [5]: widely used heuristic; no guarantees on the decomposition, long running times.

0.75	2 3 4 5
LDA (SVTD)	7
	8 9 10 11 12 13
1945-Truman 1946-Truman 1946-Truman 1946-Truman 1946-Truman 1946-Truman 1956-Fisenhower 1957-Fisenhower 1955-Fisenhower 1956-Fisenhower 1966-Johnson 1966-Johnson 1976-Ford 1978-Reagan 1978-Carter 1978-Carter 1978-Carter 1978-Carter 1978-Carter 1978-Reagan 19	14 15 16 17 18
Some Interesting Topics for $k = 18$	

single-topic model (SVTD)	LDA (SVTD)
Topic 13: federal, Hussein, intelligence	Topic 2: college, affordable, children, child
Topic 14: alliance, Atlantic, free, Europe	Topic 7: Vietnam, south, tonight, north, conflict
Topic 15: terrorists, Iraq, terror, Iraqi	Topic 17: soviet, military, peace, disarmament
Topic 18: disarmament, space, defense, soviets	Topic 18: space, civil, defense, Latin

References

A. Anandkumar et al., (2012), A method of moments for mixture models and HMM.
 J.Y Zou et al., (2013), Contrastive learning using spectral methods.
 A. Anandkumar et al., (2012), A Spectral Method for LDA.
 A. Anandkumar et al., (2014), Tensor decomposition for learning latent variable models.
 T. Kolda et al., (2009), Tensor decompositions and applications.