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Abstract

This paper presents a novel approach to uncalibrated
view synthesis that overcomes the sensitivity to the epipole
of existing methods. The approach follows a interpolate-

then-derectify scheme, as opposed to the previous derectify-

then-interpolate strategy. Both approaches generate a tra-
jectory in an uncalibrated framework that is related to a
specific Euclidean counterpart, but our method yields a
warping map that is more resilient to errors in the estimate
of the epipole, as it is confirmed by synthetic experiments.

1. Introduction
View synthesis (VS) is the rendering of virtual views of a

scene starting from a few reference pictures of the scene it-

self. Uncalibrated view synthesis (UVS) is a particular case

of view synthesis performed without the need of a calibrated

camera system. The key advantage of UVS is the possibil-

ity to perform VS without any knowledge on the imaging

device nor the need of any kind of user interaction includ-

ing manual camera calibration. In the last years examples of

applications of VS techniques have grown considerably. In

free view point TV for instance, such techniques are used

for the creation of videos where the user can look at the

scene from a point of the scene itself, moving freely in the

filmed scene. Deducing a set of information about the scene

geometry without knowing any information more than some

scene photos, VS is also used on many augmented reality

systems such as digital archives or augmented panorama.

Finally, VS is widely exploited in sports production allow-

ing, one for all, camera views on the pitch. Observe that all

these application fields can take a great benefit from fully

automated procedures, and thus from UVS techniques.

Related work The VS is based on geometric relationships

that are found between the positions of pixels representing

the same point in the scene observed from different view-

points [4]. For example, given the internal and external

parameters of the camera, and the depth of a scene point

(with respect to the camera), it is easy to obtain the position

of the point in any synthetic view [13]. Where no knowl-

edge on the imaging device can be assumed, uncalibrated

point transfer techniques utilize image-to-image constraints

such as the fundamental matrices [11], homographies [3],

trifocal tensors [2], plane+parallax [10], or relative affine

structure [15, 16] to re-project pixels from a small number

of reference images to a given view. All these techniques

requires some user interaction in order to specify a position

for the virtual camera. In [5, 6] the authors focuses on a

new automatic method for positioning virtual views based

on the relative affine structure as an implicit geometry de-

scriptor. Given two (or more) reference images, the tech-

nique yields a 1-parameter family of virtual camera poses

along the geodesic between reference views and allows in-

terpolation as well as extrapolation. In [8], this procedure is

extended by allowing additional virtual camera poses from

a 1-parameter family to positions in 3-D space along and

orthogonally to the line of sight.

Contribution Starting from state-of-the-art UVS algo-

rithms, we are going to describe an alternative UVS pro-

cedure to generate trajectories which correspond to a well

defined rigid motion (similar to the one in [6]) and which

are also naturally robust to the error introduced by epipo-

lar geometry estimation. This last property holds since

the epipole value, usually computed from image correspon-

dences and numerically instable, is not involved in the gen-

eration of rectified virtual views. In our procedure epipolar

geometry intervenes only implicitly during the rectification

step. On the whole this results in a greater numerical sta-

bility with respect to the procedures in [6] and [8] in cases

when epipole computation is affected by errors raising from

inaccurate image correspondences.

The outline of the paper is as follows. In Sec. 2 we re-

view the baseline UVS algorithm more in detail. Sec. 3
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describes our alternative solution to performed UVS. Ex-

periments are presented in Sec. 4. Finally some discussion

is reported and the concluding remarks are drawn in Sec. 5.

2. Baseline approach
The approach described in [6] can be taken as our base-

line. In this section we will briefly summarize it (see Fig. 1).

Given two reference images I1 and I2, this pipeline consists

of the following steps.

Keypoint matching. SIFT features matches are com-

puted on the two reference images as in [12].

Robust epipolar geometry. RANSAC estimation of the

fundamental matrix is performed in order to discard bad

matches (outliers). The surviving correspondences (inliers)

are used as input to the rectification and the epipole e2 of

the second image is computed as the left zero vector of the

fundamental matrix.

Rectification. Since camera calibration parameters are

unknown, an uncalibrated rectification procedure based on

sparse correspondences is employed, see [7] for details.

This procedure provides an approximation of the rectifying

homographies H1 and H2 which rectify respectively I1 and

I2, and, as a by-product, the infinite plane homography

H∞12 = H−1
2 H1 (1)

between the reference images.

Stereo matching. Once the images are rectified, dense

correspondences can be obtained using any stereo match-

ing algorithm, for example [18, 17].

De-rectification. Dense correspondences are transferred

back to the original reference images by applying the in-

verse of the rectifying homographies (de-rectification).

Relative affine structure computation. The relative
affine structure is an implicit geometry descriptor of the

scene and one of the key ingredients of this approach. Let

(mk
1 ,mk

2) with k = 1, . . . , m be the dense set of corre-

spondences on the two reference images. They are related

to each other by the following equation:

mk
2 � H∞12mk

1 + e2γ
k

1 , (2)

where γ k
1 is the relative affine structure of mk

1 and the sign

� means equality up to a scale factor. The relative affine

structure γ k
1 is obtained by solving for γ in Eq. 2:

γ k
1 =

(mk
2 × e2)T (H∞12mk

1 ×mk
2)∥∥mk

2 × e2

∥∥2 . (3)

It is possible to demonstrate that the relative affine struc-

ture depends only on the source image I1, i.e. does not

depend on the second reference image. More details on rel-

ative affine structure can be found in [16].

Trajectory generation. This phase provides a 1-

parameter family of uncalibrated rigid transformation

matrices each of which describes a points transfer map

from the source image to a virtual image.

According to Eq. 2, the points transfer map from the

source image I1 to the second one I2 is:

mk
2 �

[
I 0

]
D12

[
mk

1

γ k
1

]
, (4)

where D12 is the so-called uncalibrated rigid transforma-
tion matrix between I1 and I2 which can be expressed as

a combination of the infinite plane homography H∞12 and

the epipole e2 of the second image (please note the resem-

blance to a rigid transformation matrix):

D12 =
[
H∞12 e2

0 1

]
. (5)

Since the relative affine structure does not depend on I2,

arbitrary new views It, for t ∈ [0, 1], can be synthesized

by substituting D12 with the matrix D1t that represents the

transformation mapping the source image I1 to the virtual

one:

mk
t �

[
I 0

]
D1t

[
mk

1

γ k
1

]
. (6)

This equation allows to transfer points from the source im-

age to the synthetic image It. We now see how to compute

D1t.

As explained in [5], the set of uncalibrated rigid trans-

formation matrices is a group isomorphic to the group of

Euclidean rigid transformation SE(3, R). Let

G12 :=
[
R12 t12
0 1

]
∈ SE(3, R), (7)

where R is a rotation matrix and t is a vector representing a

translation. The isomorphism is given by the conjugacy:

D12 =
[
KR12K

−1 Kt12
0 1

]
= K̃G12K̃

−1 (8)

with K being the (upper triangular) matrix of the internal

parameters of the camera, and K̃ = [ K 0
0 1 ].

Since SE(3, R) is a Lie group, it is possible to continu-

ously parameterize virtual camera positions. In particular,

Alexa in [1] defines some operators that allow to interpolate,

extrapolate and combine rigid transformation in SE(3, R),
which, thanks to the isomorphism, can be mapped to the

group of uncalibrated rigid transformation. These operators
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Figure 1: The baseline UVS approach.

are used to compute the uncalibrated rigid transformation

D1t. In particular, given the uncalibrated transformation

matrix D12 between two reference cameras, D1t is defined

as its scalar multiple:

D1t := Dt
12 := exp (t log(D12)) t ∈ [0, 1]. (9)

Varying the value of t we obtain a 1-parameter family of vir-

tual camera which moves along a geodesic path in SE(3, R)
interpolating the position and orientation of the two refer-

ence cameras.

Warping. Warping is the last phase of the pipeline and

implements the pixels transfer from the source image to the

virtual image It. Once computed D1t, the points transfer

map is given by Eq. 6. To preserve the coherence of surfaces

and their visibility, a pixel splatting with back-to-front ren-

dering can be used as in [6]. Observe that, in order to better

handle occlusions, it is possible to exploit information from

both reference images as explained in [8].

3. The interpolate-then-derectify approach

Whereas the baseline approach follows a derectify-then-

interpolate (DTI) scheme, we propose a novel interpolate-

then-derectify (ITD) approach to UVS. More specifically,

while the DTI pipeline interpolates the actual (uncalibrated)

motion between reference images, in the ITD approach the

interpolation is (trivially) performed between rectified im-

ages, and the complexity is moved onto the de-rectification

step, which brings the interpolated rectified images back in

the original (i.e. unrectified) domain, using the inverse rec-

tifying homography. The problem is that this homography

is known only for the reference images, while for all the

intermediate synthetic images it should be interpolated.

The advantage, however, is that the ITD approach turns

out to be intrinsically robust to the error committed in

epipolar geometry estimation, since the generation of rec-

tified virtual views involves only the theoretical value of the

epipole in the rectified configuration, i.e. the direction of

the x-axis.

In [14] a similar ITD approach was taken: the rectifi-

cation and de-rectification were called pre-warp and post-
warp respectively. However the framework was calibrated,

so the post-warping was easily defined in a Euclidean refer-

ence frame, or manually specified via control points. Here

we propose a more elegant solution which exploits the ex-

ponential map to directly interpolate the rectifying homo-

graphies relative to the reference images. We will see that

the trajectory generated in this way corresponds to a well

defined rigid motion although it is not a geodesic path in

SE(3, R) as in [6].

The ITD pipeline outline is shown in Fig. 2. Please ob-

serve that only the second part of the chain is modified. The

main difference with the baseline one is that UVS is now

performed by taking as source image the rectified reference

image, whereas the baseline approach (DTI) started from

the original reference image. This produces rectified vir-

tual images which can be de-rectified by using interpolated

de-rectifying homographies.

Let IR
1 and IR

2 be the two reference images after being

rectified: the steps that characterizes the ITD pipeline are

described in the following.

Rectified trajectory generation. This phase provides a

1-parameter family of uncalibrated rigid transformation ma-

trices in the rectified configuration. Each matrix describes a

points transfer map from the source image IR
1 to a rectified

virtual image IR
t .

Similarly to Eq. (4), points transfer map between IR
1 and
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Figure 2: The proposed ITD approach.

IR
2 has the following form:

mkR
2 � [

I 0
]
DR

12

[
mkR

1

dk
1

]
, (10)

where (mkR
1 ,mkR

2 ) with k = 1, . . . , m is the dense set of

correspondences on the two rectified reference images, dk
1

is the disparity value of mkR
1 and

DR
12 =

[
HR
∞12 eR

2

0 1

]
=

⎡
⎢⎣

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ (11)

is the uncalibrated transformation matrix between IR
1 and

IR
2 . Please observe how DR

12 has a very simple form. This

holds since in the rectified configuration the infinity plane

homography is trivial and the epipole has the direction of

the x-axis, i.e. HR
∞12 = I and eR

2 =
[
1 0 0

]�
. Further-

more, observe that in this case the relative affine structure

and the disparity computed by the stereo matching coincide

(up to a scale factor).

The 1-parameter family of virtual rectified cameras

which moves along a geodesic path in SE(3, R) passing

through the position and orientation of IR
1 and IR

2 has thus

the following very simple form:

DR
1t := exp (t log(DR

12)) =

⎡
⎢⎣

1 0 0 t
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

t ∈ [0, 1].

(12)

Warping. In the ITD pipeline, the warping phase is per-

formed in the rectified configuration. Once computed DR
1t,

the points transfer map to use has the very simple form:

mkR
t �mkR

1 +

⎡
⎣tdk

1

0
0

⎤
⎦ . (13)

Interpolated de-rectification. To obtain a virtual image

on a path interpolating the position and orientation of the

two original reference cameras, we must de-rectify the vir-

tual rectified image IR
t . The de-rectifying homography,

though, is known only for the reference images, whilst for

intermediate virtual images it must be interpolated.

Let H1 and H2 the homographies that rectify I1 and I2

respectively. As pointed in App. A, the geodesic interpola-

tion between the two is given by:

Ht := H1(H−1
1 H2)t = H1 exp(t log(H−1

1 H2)) (14)

with t ∈ [0, 1].
To de-rectify IR

t we can simply use H−1
t . Please note

in Eq. (14) that H−1
1 H2 = H−1

∞12, and that H∞12 is conju-

gated (or similar) to a rotation matrix, hence its eigenvalues

are {1, e±iθ}. This guarantees that H∞12 has a real loga-

rithm, as discussed in App. A (with reference to that analy-

sis, H∞12 falls in case b).)
Let us now consider the following 4× 4 matrices:

H̃1 =
[
H1 0
0 1

]
. (15)

H̃t =
[
Ht 0
0 1

]
. (16)
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With reference to the following diagram:

I1

D1t−−−→ It

H̃1

⏐⏐� �⏐⏐H̃−1
t

IR
1 −−−→

DR
1t

IR
t

(17)

it is easy to see that:

D1t = H̃−1
t DR

1tH̃1 =

⎡
⎢⎣H−1

t H1 H−1
t

[
t
0
0

]

0 1

⎤
⎥⎦

=

⎡
⎢⎣(H−1

2 H1)t (H−1
2 H1)tH−1

1

[
t
0
0

]

0 1

⎤
⎥⎦

=
[
Ht
∞12 tHt

∞12e12

0 1

]
.

(18)

So D1t is conjugated (cf. Eq. 8) with the rigid motion:[
Rt

12−tRt
12R

T
12t12

0 1

]
=

[
Rt

12 0
0 1

] [
I −tRT

12t12

0 1

]

=
[
R12 0
0 1

]t [
I −RT

12t12

0 1

]t (19)

because e1 = −KRT
12t12 (whereas e2 = Kt12).

The geodesic path in SE(3, R) would have been:

[
R12 t12

0 1

]t

(20)

but since (AB)t �= AtBt Eq. 19 is not the geodesic. As

a matter of fact, at time t our trajectory corresponds to the

rigid motion obtained by composing a rotation Rt
12 and a

translation of tC, where, C is the center of the second refer-

ence camera.

4. Results
In this section we show and discuss some results ob-

tained with a MATLAB R© implementation of the two

pipelines. Experiments show that the ITD is more robust

than the DTI pipeline with respect to the error introduced

by automatic sparse correspondence extraction and epipo-

lar geometry estimation.

In the first experiment, we synthetically generated 1000

reference images pairs by projecting a cloud of 50 3D-

points with randomly chosen camera matrices lying on a

sphere enclosing the points. We run the two pipelines for in-

creasing values of t and considered the final point positions

as a reference ground truth (different for DTI and ITD). We

Figure 3: Average difference. On the x-axis the values for

the t parameter, on the y-axis the average absolute differ-

ence (in pixels) between the point positions obtained with

ITD/DTI and the reference position. Green dashed lines

correspond to DTI, whereas red solid lines correspond to

ITD. Different markers correspond to different values of the

variance.

Figure 4: Percentage of Corrupted Points. On the x-axis

the values for the t parameter, on the y-axis the percentage

of points that are mapped by ITD/DTI more that 5 pixels

away reference position. Green dashed lines correspond to

DTI, whereas red solid lines correspond to ITD. Different

markers correspond to different values of the variance. The

red lines corresponding to ITD are not visible as they are

horizontal and set to 0%.

repeated the experiment by progressively adding Gaussian

random noise to the reference images (noise has 0 mean and

variance respectively of 0.1, 0.4 and 0.7) and evaluating for

each pipeline the absolute value of the difference between

the final point positions and the reference positions. This

simulates the typical precision on keypoints location in real

cases.

Results are shown in Fig. 3 and 4. It can be seen that as

the noise variance increases, ITD keeps on outperforming

the DTI pipeline, resulting in a more robust behavior. Re-

markably, no point is mapped more that 5 pixels away from

its reference position by ITD, whereas DTI maps about 15%

of points outside the 5-pixels radius. This is due to the in-

dependence of ITD from the lack of precision in the epipo-
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(a) Synthetic frames generated with DTI.

(b) Synthetic frames generated with ITD.

Figure 5: Synthetic frames generated with the two pipelines. This figure is best viewed in colour. In red the ground truth,

in black the virtual views computed after perturbing the epipolar geometry. Clearly ITD (bottom) is closer to the ground truth

than DTI (top).

lar geometry computation, despite the non-linear refinement

with minimization of the Sampson error.

In the second experiment, whose results are shown in

Fig. 5, we generated two synthetic sequences using respec-

tively ITD and DTI pipelines with point correspondences

corrupted with Gaussian random noise with zero mean and

variance σ2 = 0.7). In this particular instance, the epipolar

geometry computation is particularly instable, for an error

of order 103 is committed over e2. As the parameter t in-

creases the DTI output (in black) departs visibly from the

ground truth (in red), whereas the ITD output is indistin-

guishable from the noise-free one.

5. Conclusions

We described a modified view synthesis pipeline that

renders a synthetic sequence of virtual images from uncali-
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brated reference images. We demonstrated that our method

generates trajectories which correspond to a well defined

rigid motion and which are also naturally robust to the error

introduced by epipolar geometry estimation. This alterna-

tive approach can thus be particularly useful when refer-

ence images present poor precision in keypoints correspon-

dences, or when epipolar geometry estimation is degener-

ate. In these situations the gain of view synthesis quality

is demonstrated with some experiments. The visual quality

of the output now depends almost exclusively on the stereo

matching procedure. Future work will aim at improving this

stage.
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A. On interpolating homographies
In this appendix we will set and discuss the problem of

interpolating homographies of the projective plane. This

is similar to the problem of interpolating rigid motion that

arise in the field o robotics and computer graphics, but un-

fortunately it does not have an equivalent closed form solu-

tion, to the best of our knowledge.

Before, let us state some known results in linear groups

theory.

Definition A.1. The linear group GL(n, R) is the group of
the invertible n× n real matrices.

GL(n, R) := {A ∈ M(n, R)(n, R) : det(A) �= 0}
where M(n, R)(n, R) denote the space of all n × n real
matrices.

The group of homographies (or projectivity) of P
2 is iso-

morphic to GL(3, R)/∼, where ∼ represents the equiva-

lence relation “up to a scale factor”.

Definition A.2. For each matrix A ∈ M(n, R) let us define:

exp(A) := I +
∞∑

k=1

Ak

k!

Proposition A.3. There exist an open neighborhood U �
0 in M(n, R) which is mapped homeomorphically by the
map X → exp(X) onto an open neighborhood V � I in
GL(n, R).

The surjectivity of exp restricted to U implies the ex-

istence of the inverse map log : V → U such that

exp(log(X)) = X. Indeed it turns out that the series

log(A) := −
∞∑

k=1

(I −A)k

k

is convergent for all matrices in the ball ‖A− I‖F < 1, and

exp(log(A)) = A.

The logarithm map projects a neighborhood V of I in

GL(n, R) into a neighborhood U of 0 in M(n, R), which

can be identified with the tangent space to GL(n, R) at I.

This picture is reminiscent of Riemann’s projection of the

sphere onto a plane. The exponential map projects this tan-

gent space back into GL(n, R). A straight path in the tan-

gent space emanating from 0 is mapped onto a geodesic in

GL(n, R) emanating from I. This is formalized by the fol-

lowing:

Proposition A.4. Given a matrix A ∈ GL(n, R), the matrix
At ∈ GL(n, R)

At := exp(t log(A)),

where t ∈ [0, 1], describes a geodesic path in GL(n, R)
from I to A

Every matrix in GL(n, R) has a logarithm, albeit not

necessarily real. For obvious reasons, though, we are in-

terested in real matrices, hence the following proposition is

particularly useful [9]:

Theorem A.5. Given A ∈ GL(n, R), a real logarithm ex-
ists iff each of its Jordan blocks associated to a negative
eigenvalue occours an even number of times.

Corollary A.6. A sufficient condition for A ∈ GL(n, R) to
have a real logarithm is that A has no eigenvalues on the
closed negative real axis.

When exists, the real logarithm is not unique. How-

ever, among all real logarithms there is a unique one whose

eigenvalues has imaginary part lying in ]−π, π [. This

unique logarithm is called the principal logarithm of A. It

will be denoted by log A.

We can now state the problem as follows:

Problem A.7. Given two homographies of P
2 H1 and H2

find a “natural” interpolating homography H(t) where t ∈
[0, 1].

As homography matrices are defined up to a scale factor,

we can assume det(H1) > 0 and det(H2) > 01. The prob-

lem can therefore be re-formulated – with no generality loss

– as follows:

Problem A.8. Given a homography of P
2 whose matrix H

is real and with det(H) > 0, find an interpolating path
H(t) ∈ GL(3, R), from I to H , where t ∈ [0, 1].

1As these matrices are 3x3 one can change the sign of the determinant

by multiplying by -1
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The original problem can be reduced to the latter by tak-

ing H = H−1
1 H2. Given such an interpolating path H(t),

the solution to the original problem is H1H(t).
Based on Proposition A.4, the natural solution is to take

H(t) := Ht = exp(t log H). (21)

As a matter of fact, the formula above solves our problem

as long as log H is real, hence we shall study the spectral

properties of H in order to apply Theorem A.5.

The eigenvalues of any matrix in GL(3, R) are either all

real, or one real and two conjugate complex. In our case,

as det(H) > 0, the eigenvalues of H are either a1) all real

and positive, a2) two negatives and one positive, or b) one

real positive and two conjugate complex.

In cases a1) and b) the real logarithm of H exists thanks

to Corollary A.6. Let us now concentrate on case a2). Let

H = V

[
A 0
0 λ3

]
V −1

be the eigendecomposition of H in this case. It turns out

that either a2.1) A is diagonal A =
[−λ1 0

0 −λ2

]
if H

can be diagonalized, or a2.2) A is a 2 × 2 Jordan block

A =
[−λ 1

0 −λ

]
if H cannot be diagonalized. Unfortunately,

according to Theorem A.5, A does not have a real logarithm

in these two cases, unless λ1 = λ2 in case a2.1.

Hence, a solution to the problem of interpolating gen-
eral homographies is still missing. However, as far as infi-

nite plane homographies are concerned, the favorable case

b applies.
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