
A New Method of Moments for Latent Variable Models

Matteo Ruffini · Marta Casanellas · Ricard Gavaldà

Abstract We present an algorithm for the unsupervised learning of latent variable models based on the
method of moments. We give efficient estimates of the moments for two models that are well known e.g. in
text mining, the single-topic model and Latent Dirichlet Allocation, and we provide a tensor decomposition
algorithm for the moments that proves to be robust both in theory and in practice. Experiments on synthetic
data show that the proposed estimators outperform the existing ones in terms of reconstruction accuracy,
and that the proposed tensor decomposition technique achieves the learning accuracy of the state-of-the-art
method with significantly smaller running times. We also provide examples of applications to real-world
text corpora for both single-topic model and LDA, obtaining meaningful results.

Keywords Spectral Methods · Method of Moments · Latent Variable Models · Topic Modeling

1 Introduction

Latent variable models (LVM) are a wide class of parametric models characterized by the presence of some
hidden unobservable variables influencing observable data. A lot of widely used models belong to this class:
Gaussian mixtures, latent Dirichlet allocation, naïve Bayes and hidden Markov models and many others.
The huge availability of data and the widespread of real world applications, like health-care data mining,
text analytics, vision and speech processing, has boosted the need for accurate and fast algorithms to learn
models belonging to this class.

For many decades, the standard approach to learn such models has been the Expectation Maximization
method (EM) (Dempster et al., 1977), an iterative technique based on the maximum likelihood principle.
EM is easy to understand and to implement and can be used for any latent variable model. Nevertheless,
EM has many drawbacks: it is known to produce suboptimal results and may be very slow when the model
or data dimension grow (Balle et al., 2014).

To overcome these issues a variety of techniques based on the method of moments and tensor decomposition
have been proposed in the last years (Anandkumar et al., 2014, 2012a,b; Jain and Oh, 2014; Hsu and
Kakade, 2013; Balle et al., 2014; Chaganty and Liang, 2013; Song et al., 2011). Generalizing an approach
introduced by Pearson (1894), these methods first store in multidimensional tensors the low order moments
of the observable data, and then recover the parameters of the desired model via tensor decomposition
techniques. Moment-based algorithms are in general faster than EM as they require a single pass over the
data, and have provable guarantees of learning accuracy in polynomial time.

Anandkumar et al. (2014) presented an exhaustive survey showing that the spectral learning of most of
the known LVM can be abstracted in two steps: first, given a prescribed LVM, they show how to operate
with the data to obtain an empirical estimate of the moments, expressed in the form of symmetric low rank
matrices and tensors; in a second step, the moments are decomposed using tensor/matrix decomposition
techniques, to obtain the unknown parameters of the model. That paper also provides a method to derive

mruffini@cs.upc.edu

marta.casanellas@upc.edu

gavalda@cs.upc.edu

Universitat Politècnica de Catalunya and BGSMath

such decomposition, the Tensor Power Method (TPM). This abstraction allows to split the research on
methods of moments in two main non-disjoint areas.

A first area concentrates on methods to retrieve from data empirical estimates of the moments for specific
LVMs. Examples are the works by Jain and Oh (2014) for mixture models with categorical observations, by
Chaganty and Liang (2013) for mixtures of linear regressions, by Anandkumar et al. (2012a) for naïve Bayes
models, and by Hsu et al. (2012) for hidden Markov models. Important examples come from text mining,
where the observable data, called features, generally coincides with the words appearing in a document,
while the hidden variable can be, for example, the topic of the document. A simple model is the single-topic
model, where each text is assumed to be about only one topic and the probability of a given word appearing
in a text depends on the topic of the text; equations to retrieve a moment representation for this model are
provided by Anandkumar et al. (2012a) and Zou et al. (2013). An alternative and more complex model is
Latent Dirichlet Allocation (LDA) (see Griffiths and Steyvers, 2004; Blei et al., 2003), for which Anandkumar
et al. (2012b) provide empirical estimators of the moments.

A second research area focuses on methods to decompose the low order moments to retrieve the pa-
rameters of the model. Literature on tensor decomposition is vast and it is believed to have origin in
the works by Hitchcock (1927, 1928). The topic received attention in the field of psychometrics (Carroll
and Chang, 1970; Harshman, 1970; Tucker, 1966) and chemometrics (Appellof and Davidson, 1981) and
extensive surveys are provided by Tomasi and Bro (2006); Kolda and Bader (2009) and Sidiropoulos et al.
(2017). These works also present several classical techniques to obtain the so-called canonical polyadic
decomposition (CPD) of a three dimensional tensor, which expresses it as a linear combination of rank-1
tensors. Kolda and Bader (2009) recall one of the most popular algorithms to obtain the CPD of a generic
tensor: Alternating Least Square (ALS) (whose origins traces back to Carroll and Chang, 1970; Harshman,
1970). ALS is an heuristic that works by fixing all-but-one the factors decomposing a tensor, and updating
the remaining factor by solving an overdetermined linear least squares problem. ALS is easy to implement
and to understand but is known to be prone to local minima, requiring several random restarts to return
meaningful results (see the discussion by Kolda and Bader, 2009, pg. 18). A different line of work consists in
approaching the tensor decomposition problem with simultaneous Schur decomposition (Van Der Veen and
Paulraj, 1996; De Lathauwer et al., 2004; Colombo and Vlassis, 2016) or matrix optimization methods to
perform simultaneous diagonalization (Kuleshov et al., 2015). In theory, one could use any of these methods
to decompose the three-dimensional tensor containing the third order moments, but the high dimensionality
of that tensor makes this approach often computationally unfeasible. On the other hand, one can rely on
the specific structure of the whole set of low order moments by using not only the third, but also the first
and the second order moments to explicitly exploit their symmetry properties and obtain the desired model
parameters more efficiently and with provable guarantees of global optimality. This is the approach followed
by methods of moments.
The reference method here is the Tensor Power Method (TPM) from (Anandkumar et al., 2014). TPM
manipulates the low-order moments to obtain a symmetric orthogonal tensor that is decomposed using a
high-dimensional extension of the well-known matrix power method, with an approach proposed by Zhang
and Golub (2001) and Kolda (2001). The main issue of this algorithm is its scalability, as its running
time grows as k5 where k is the number of latent components. An alternative, which in general has better
dependence on the number of latent factors, consists in using matrix-based techniques and a simultaneous
diagonalization approach, specializing an approach that can be traced back to Sanchez and Kowalski (1990)
and Leurgans et al. (1993). Examples of these methods of moments can be found in (Anandkumar et al.,
2012a), where an algorithm based on the eigenvectors of a linear operator is used, and in (Anandkumar
et al., 2012b), with a method based on the singular vectors of a singular-value decomposition (SVD). These
two methods are faster than TPM by far, but they are more sensitive to perturbations on the input data.

A method of moments uses a set of N samples to empirically estimate the moments and then uses
tensor decomposition methods to recover the model parameters from the decompositions of the estimated,
perturbed, moments. The decomposition methods listed above differ from each other on how perturbations
of the input moments affect the final results. A method of moments can thus be improved modifying two
distinct points; one is acting on the procedures to estimate the moments, by reducing their dependence on
the sample size and get more accurate estimates with less data. Another is by working on the decomposition
algorithms, reducing their sensitiveness to input perturbations and improving their performance. This paper
presents improvements in both directions; in particular:

2

– We present improved estimators of the moments for the single-topic model and Latent Dirichlet Allocation.
These estimators modify the ones presented in (Zou et al., 2013) increasing the robustness and the
stability with respect to the noise, as experimentally shown in Section 4. Also, we present a novel theorem
that relates the sample accuracy of the proposed estimates to the sample size and to the lengths of the
documents.

– We provide a new algorithm (named SVTD, Singular Value based Tensor Decomposition) to decompose
the retrieved low-rank symmetric tensors of the moments. This method is alternative to the ones
presented in the cited literature, and is based on the singular values of a SVD, which are known to
be stable under random perturbations (unlike the singular vectors, as shown by Stewart 1990). Our
algorithm is simple to implement and understand, is deterministic and based only on standard matrix
operations rather than tensor ones. Experimental results (see Section 4) show that SVTD outperforms
existing matrix-based methods from Anandkumar et al. (2012a,b) in terms of reconstruction accuracy, is
an order of magnitude faster than TPM, and uses far less memory. In Section 3.1 we outline in more
detail the differences between the presented method and the existing techniques.

– Finally, we test SVTD on real world text corpora, both for single-topic model and LDA, with satisfactory
and meaningful results.

The outline of the paper is the following: Section 2 contains the proposed estimators of the moments and a
sample complexity bound; Section 3 contains the proposed decomposition algorithm; Section 4 tests the
presented methods on both synthetic and real-world data; Section 5 concludes the paper outlining possible
future developments and applications.

2 Moments Estimation for Latent Variable Models

2.1 An Improved Estimator for the Single-Topic Model

In this section we recall the single-topic model for which we introduce a new estimator of the moments; we
then provide a sample accuracy bound for this estimator and we compare it with existing methods.

We consider a corpus of N text documents and a set of k topics; each document is deemed to belong to only
one topic. The vocabulary appearing in the corpus is constituted of n words, from which it is immediate
to label all the words of the vocabulary with a number between 1 and n. The generative process works as
follows:

– First, a (hidden) topic Y ∈ {1, ..., k} is drawn, according to a given probability distribution; we define,
for any j ∈ {1, ..., k} the probability of drawing the topic j as follows:

ωj := P(Y = j), and ω := (ω1, . . . , ωk)
>.

– Once the topic has been chosen, all the words of the documents are generated according to a multinomial
distribution; for each i ∈ {1, ..., n}, µi,j will be the probability of generating word i under topic j:

P(Drawing word i|Y = j) = µi,j , and M = (µi,j)i,j ∈ Rn×k.

Also we will denote by µi the set of columns of M : M = [µ1|, ..., |µk]. It is a common practice to identify
a topic with the probability distribution of the words under that topic, i.e. with the columns µ1, . . . , µk
of M .

A practical encoding of the words in a document consists in identifying each word with an n−tuple x ∈ Rn,
defined as:

(x)h :=

{
1 if the word ish,
0 otherwise.

In fact, if xj is the j-th word of a document of c words, we can define a vector X whose coordinate h
represents the number of times the word h has appeared in the document: X :=

∑c
j=1 xj . It is common to

call X a bag of words representation of a document. We can see that, if the topic is j, each coordinate of X
is distributed as a binomial distribution with parameter c and µi,j :

Distr(Xi|Y = j) = B(c, µi,j).

3

We now consider a corpus of N documents; for each document i ∈ {1, ..., N} we assume to have the
word-count vector X(i) as above, and the total number of words in the document: ci =

∑n
j=1(X

(i))j . These
are the only variables that we assume known, while all the parameters of the model, i.e. the pair (M,ω),
and the hidden topic of each document are supposed to be unknown.

Remark 1 Recovering the model parameters is a useful step to infer the hidden topic of each document in
a corpus. In fact, given a set of parameters (M,ω), and a document X, if Y is the hidden topic of X we can
calculate

P(Y = j|X) =
P(X|Y = j)ωj∑k
i=1 P(X|Y = i)ωi

, (1)

and assign X to the topic that maximizes that probability.

The following theorem is a variation of Propositions 3 and 4 by Zou et al. (2013) and relates the observable
moments of the known variables with the unknowns (M,ω). It provides three estimators: M̃1 ∈ Rn,
M̃2 ∈ Rn×n and M̃3 ∈ Rn×n×n converging to the symmetric low rank tensors that will be used to retrieve
the model parameters1.

Theorem 1 Fix a value N ∈ N, and let X(1), ..., X(N) be N sample documents generated according to
a single-topic model with parameters (M,ω). Define the vector M̃1 ∈ Rn, and the symmetric tensors
M̃2 ∈ Rn×n and M̃3 ∈ Rn×n×n whose entries are as follows, for h ≤ l ≤ m:

(M̃1)h :=

∑N
i=1(X

(i))h∑N
i=1 ci

,

(M̃2)h,l :=

∑N
i=1(X

(i))h(X
(i) − χh=l)l∑N

i=1(ci − 1)ci
,

(M̃3)h,l,m :=χh<l<m

∑N
i=1(X

(i))h(X
(i))l(X

(i))m∑N
i=1(ci − 2)(ci − 1)ci

+ χ(h=l<m)∨(h<l=m)

∑N
i=1(X

(i))h(X
(i) − 1)l(X

(i))m∑N
i=1(ci − 2)(ci − 1)ci

+ χh=l=m

∑N
i=1(X

(i))h(X
(i) − 1)l(X

(i) − 2)m∑N
i=1(ci − 2)(ci − 1)ci

,

where χ is the indicator function and ci is the number of words appearing in document i. We have:

E[M̃1] =M1 :=
k∑
i=1

ωiµi, E[M̃2] =M2 :=
k∑
i=1

ωiµi ⊗ µi, E[M̃3] =M3 :=
k∑
i=1

ωiµi ⊗ µi ⊗ µi,

where ⊗ denotes the tensor product between vectors.

Notice that, because M2 and M3 are symmetric, the previous theorem defines all the entries of these
tensors. Given a sample, we are able to calculate the three estimators M̃1, M̃2 and M̃3. Theorem 1 allows
to express observable moments in the form of a symmetric tensor. By construction it is immediate to see
that bothM2 andM3 have symmetric-rank less than or equal to k, and that limN→∞ M̃i =Mi for i = 1, 2, 3.

The following theorem provides a sample accuracy bound for the estimators of Theorem 1.

Theorem 2 Let M̃2 and M̃3 be the empirical estimates of M2 and M3 obtained using Theorem 1, and let
(c1, ..., cN) be a vector containing the lengths of the various documents of the corpus. Define

C1 =
N∑
i=1

ci, C2 =
N∑
i=1

(ci − 1)ci, C3 =
N∑
i=1

(ci − 2)(ci − 1)ci,

W
(N)
2 =

∑N
i=1(ci(ci − 1))2

C2
2

, W
(N)
3 =

∑N
i=1(ci(ci − 1)(ci − 2))2

C2
3

.

1 The proofs of all the results are provided in the Appendix.

4

Then, for any pair ε > 0 and 0 ≤ δ < 1, such that√
W

(N)
2 (1− ||M2||2F) +

√
log(

1

δ
)
maxj(cj)

√
C1

C2
< ε,

it holds that
P(||M2 − M̃2||F < ε) > 1− δ.

Also, for any pair ε > 0 and 0 ≤ δ < 1, such that√
W

(N)
3 (1− ||M3||2F) +

√
log(

1

δ
)
maxj(cj(cj − 1))

√
C1

C3
< ε,

it holds that
P (||M3 − M̃3||F < ε) > 1− δ.

Remark 2 We briefly comment on the meaning of the theorem by focusing on M2 (similar arguments hold
for M3) and analyzing the case where all the documents have the same length c (ci = c for all i) and c is
asumed to be somewhat large (so c ' c− 1). Then the bound simplifies to:√

1

N
(1− ||M2||2F) +

√
1

Nc
log(

1

δ
).

It is interesting to notice that the worst-case accuracy of the bound is ε = O(1/
√
N). Also, the bound

becomes smaller as c is large, with a clear limitation: if we have very few documents (N small), even if they
are very long (large c), it is impossible to accurately learn the model, as in particular we may not even see
all the topics.

Remark 3 (Alternative estimates of the moments) The simplest estimation of the low-order mo-
ments for the single-topic model is provided by Anandkumar et al. (2012a), who, for each document
i ∈ {1, ..., N} consider three randomly selected words, x(i)1 , x

(i)
2 , x

(i)
3 , and then show that∑N

i=1(x
(i)
1)h

N
−−−−→
N→∞

(M1)h,

∑N
i=1(x

(i)
1)h(x

(i)
2)l

N
−−−−→
N→∞

(M2)h,l,

∑N
i=1(x

(i)
1)h(x

(i)
2)l(x

(i)
3)m

N
−−−−→
N→∞

(M3)h,l,m.

This method only uses three words per document, and has mainly illustrative purposes, as noticed by the
authors. A method more similar to the one proposed in Theorem 1 is described by Zou et al. (2013). Both
the method by Zou et al. (2013) and that in Theorem 1 average the estimators with the document lengths,
taking into consideration all the words in each document; however, in (Zou et al., 2013) averaging is done
for each document and then they are averaged together with the same weight; for example, Zou et al. (2013)
calculate the off-diagonal entries of M̃2 as follows:

(M̃2)h,l :=
1

N

N∑
i=1

(X(i))h(X
(i))l

(ci − 1)ci
.

This calculation is a simple average of many estimators giving the same weight to all documents, namely
1/N . Instead, in Theorem 1, we propose the following different formula:

(M̃2)h,l :=

∑N
i=1(X

(i))h(X
(i))l∑

i (ci − 1)ci
=

N∑
i=1

(X(i))h(X
(i))l

(ci − 1)ci

(ci − 1)ci∑
j (cj − 1)cj

.

We can see that here we perform a weighted average, where the weight of the sample i is (ci−1)ci∑
j (cj−1)cj

,
giving in practice more weight to longer documents, which are supposed to be the most reliable; we will
experimentally see in Section 4 that the proposed approach is less sensitive to the noise, leading to improved
results. If all the documents have the same length, the two estimates will produce the same number.

5

2.2 Extension to Latent Dirichlet Allocation

In this section we extend the results of the previous section to a more complex latent variable model, the
latent Dirichlet allocation.

The obvious criticism of the single-topic model is that each document can deal with a unique topic,
an hypothesis that is commonly considered unrealistic. To overcome this issue, more complex models have
been introduced, one of them being Latent Dirichlet Allocation (LDA) (Griffiths and Steyvers, 2004; Blei
et al., 2003). In its simplest form, LDA assumes that each document deals with a multitude of topics, in
proportions that are governed by the outcome of a Dirichlet distribution. More precisely, considering our
text corpus with N documents with a vocabulary of n words, the generative process for each text is the
following:

– First a vector of topic proportions is drawn from a Dirichlet distribution with parameter α ∈ Rk+, Dir(α);
we recall that Dirichlet distribution is distributed over the simplex

∆k−1 = {v ∈ Rk : ∀i, vi ∈ [0, 1], and
∑

vi = 1},

and has the following density function, for h ∈ ∆k−1:

P(h) =
Γ (α0)

∏k
i=1 h

αi−1
i∏k

i=1 Γ (αi)
.

Where α0 =
∑
αi. From a practical point of view, this step consists in drawing a vector of parameters

h ∈ ∆k−1 such that hi represents the proportion of the topic i in the document.
– Once the topic proportions (also named mixture of topics) have been chosen, each word of the document

is generated according to the following procedure: First a (hidden) topic of the word, say Y ∈ {1, ..., k},
is drawn, according to the probabilities defined by h (so we will have probability hj of drawing topic j)
and then we will generate the word itself according to a multinomial distribution; for each i ∈ {1, ..., n},
µi,j will be the probability of generating the word i under the topic j:

P(Drawing word i|Y = j) = µi,j , and M = (µi,j)i,j ∈ Rn×k.

Keeping the notation used in the previous section, we will write x(i)j ∈ Rn for the coordinate vector
indicating the word at position j in document i, X(i) =

∑
x
(i)
j for the word-count vector of document i,

and ci =
∑n
j=1(X

(i))j for the number of words in that document. In the case of LDA, the unknown model
parameters are the pair (M,α).

As in the case of the single-topic model, we want to manipulate the observable moments in order to
obtain a set of symmetric low-rank tensors. The following theorem is an immediate modification of the one
presented by Anandkumar et al. (2012b, Lemma 3.2), and relates the observable moments of the known
variables with the unknowns (M,α), providing the required representation. The only modification consists
in the fact that we have used the estimates of Theorem 1 instead of the standard ones of Remark 3.

Theorem 3 Let M̃1, M̃2 and M̃3 be the empirical estimates defined in Theorem 1. Define

M̃α
2 := M̃2 −

α0

α0 + 1
M̃1 ⊗ M̃1,

M̃α
3 := M̃3 −

α0

α0 + 2
(M1,2) +

2α2
0

(α0 + 2)(α0 + 1)
M̃1 ⊗ M̃1 ⊗ M̃1,

where M1,2 ∈ Rn×n×n is a three-dimensional tensor such that

(M1,2)h,l,m := ((M̃2)h,l(M̃1)m + (M̃2)l,m(M̃1)h + (M̃2)m,h(M̃1)l).

Then

E[M̃α
2] =

k∑
i=1

αi
(α0 + 1)α0

µi ⊗ µi =Mα
2 ,

E[M̃α
3] =

k∑
i=1

2αi
(α0 + 2)(α0 + 1)α0

µi ⊗ µi ⊗ µi =Mα
3 .

6

This technique allows to express the observable moments in the form of a symmetric tensor. Both Mα
2 and

Mα
3 have symmetric-rank less than or equal to k, and so we can use any tensor decomposition algorithm

to retrieve from them the unknown model parameters (M,α). This approach has several advantages over
traditional methods based on Markov Chain Monte Carlo (MCMC) algorithms, like the one presented by
Griffiths and Steyvers (2004). While MCMC methods require several passes over the data, the method
presented here only uses one pass to compute the moments described in Theorem 3. This guarantees higher
efficiency, which is confirmed by our experiments in Section 4.3. Furthermore, if the tensor decomposition
method applied to the moments is robust, and provably recovers (M,α) from the moments, then the proposed
approach will be guaranteed to recover the parameters of the model generating the data, guarantees that do
not seem to exist for MCMC approaches.

Remark 4 (Inference) Similarly to the single-topic model, one of the main usages of LDA is to infer the
mixture of hidden topics of each document in a corpus. Unfortunately, an exact formula to perform this
inference is not known, but a number of approximate approaches exist, like Gibbs sampling (Griffiths and
Steyvers, 2004; Newman et al., 2009) and Expectation Propagation (Blei et al., 2003). In our case, if we
assume to know the values of model parameters (M,α), we can apply a modified Gibbs sampling to infer
the topic mixture for a given text; consider a text, whose words are x1, ..., xc; then, in LDA, each word xi
is generated by a unique topic Yxi . Using the equations for Gibbs sampling from Griffiths and Steyvers
(2004), if Yxi is the hidden topic of word xi and Y−xi is the set of topic assignment for all the words in the
document excluded xi, it can be shown that

P(Yxi = j|Y−xi , xi) ≈ µxi,j
n−i,j + αi
c− 1 + α0

, (2)

where n−i,j is the number of words assigned to topic j excluding xi, c is the total number of words in the
document and µxi,j is the probability of drawing the word xi under topic j. So, given a document, first we
have to assign to each word a hidden topic, and then update this assignment word by word in a iterative
way, using a Monte-Carlo assignment governed by equation (2). Each iteration updates the number of words
assigned to a given topic; after a suitable number of iterations, we can estimate the topic mixture for a given
document as the vector h ∈ Rk such that hj =

nj+αi
c+α0

, where nj is the number of words assigned to topic j.

2.3 Generic Representation of the Moments for Latent Variable Models

In the previous sections we have seen, for the single-topic model and for LDA, how to estimate from data
three entities M1, M2 and M3 of the form

M1 =
k∑
i=1

ωiµi, (3)

M2 =
k∑
i=1

ωiµi ⊗ µi, (4)

M3 =
k∑
i=1

ωiµi ⊗ µi ⊗ µi. (5)

For several latent variable models, an analogous characterization of the moments to the one presented in
Equations (3), (4) and (5) is possible, allowing to manipulate a dataset to obtain via linear transformations
an empirical estimate of the triple (M1,M2,M3). Examples are Gaussian mixture models (Hsu and Kakade,
2013; Ge et al., 2015), hidden Markov models (Balle et al., 2014), latent trees (Huang et al., 2014) and
mixtures of linear regressions (Chaganty and Liang, 2013). This characterization reduces the problem of
learning the parameters of a LVM to that of solving the system formed by Equations (3), (4) and (5), which
can in general be assessed using matrix/tensor decomposition techniques. The next Section 3 is dedicated to
this task.

Remark 5 (Identifiability of the model parameters) It is important to remark that the system of
Equations (3), (4) and (5) admits (M,ω) as unique real solution (for generic parameters), which guarantees
the identifiability of the model. In fact, Comon et al. (2017) guarantee that if Equation (5) has a unique
solution and system (3), (4) and (5) has at least one solution, then also the whole system (3), (4) and (5)
admits the same unique solution. Generic uniqueness of the real solutions of (5) is guaranteed by known
results on tensor decomposition (Chiantini et al., 2017; Qi et al., 2016), and can be verified using Kruskal’s
(Kruskal, 1977) criterion (see also Kolda and Bader, 2009, Sec. 3.2).

7

3 Singular Value based Tensor Decomposition

In this section we present an algorithm to retrieve the parameters of a LVM from the triple (M1,M2,M3).
The proposed method only relies on matrix decomposition techniques, is deterministic, scales better in time
and memory than TPM, and is more robust than the matrix-based ones described before, as confirmed by
the experiments (Section 4).

Our method relies on the observation that M2 and the slices of M3 admit a representation in terms
of matrix products as

M2 =MΩM>, (6)

M3,r =MΩ1/2diag(mr)Ω
1/2M>, (7)

where Ω = diag(ω), M3,r ∈ Rn×n is the r-th slice of M3 and mr is the r-th row of M . As a first step, it
stores the whitened slices of M3 into a three-dimensional tensor H in Rn×k×k and then performs n SVD
on the slices of H (belonging to Rk×k) obtaining the rows of M as the singular values of that slices; for
this reason we name our method SVTD, Singular Value based Tensor Decomposition. The key steps of our
algorithm (SVTD) are outlined in Algorithm (1).

Algorithm 1 SVTD
Require: M1, M2, M3, and the number of latent states k ≤ n
1: Decompose M2 as M2 = UkSkU

>
k with a SVD truncated at the k-th singular vector.

2: Define the whitening matrix E = UkS
1/2
k and calculate its pseudoinverse E† = (Sk)

−1/2U>k .
3: Select a feature r and compute M3,r

4: Compute O as the left singular vectors of Hr := E†M3,rE†
>

and mr as the singular values.
5: for i = 1→ n do
6: Compute Hi := E†M3,iE

†>, where E† = (Sk)
−1/2U>k is the Moore-Penrose pseudo-inverse of E

7: Obtain the i-th row of M as the diagonal entries of O>HiO
8: end for
9: Obtain ω solving M1 =Mω
10: Return (M,ω)

The constructive proof of the following theorem will explain why SVTD performs a correct retrieval of
the desired model parameters.

Theorem 4 Let r be the feature selected at Step 3 of SVTD, and assume k ≤ n. If all the elements of mr

are distinct and M2 and M3 have rank k, then SVTD produces the values of (M,ω) exactly.

Proof As a first step we perform a SVD to M2 = UkSkU
>
k , where Uk ∈ Rn×k and Sk ∈ Rk×k are the

matrices of the singular vectors and values truncated at the k-th greatest singular value. Then we define the
whitening matrix E = UkS

1/2
k ∈ Rn×k, and for a slice M3,r of M3, we define Hr ∈ Rk×k as

Hr = E†M3,r(E
>)†,

where E† = (Sk)
−1/2U>k is the Moore-Penrose pseudo-inverse of E. Now, observe that there exists a unique

orthogonal k × k matrix O, such that
MΩ1/2 = EO. (8)

To see that such a matrix exists, it is enough to observe that the matrix O = E†MΩ1/2 is orthogonal
(which can be seen from equation MΩM> = EE>) and fulfills the requested relation. To see that it is
unique, assume that that O1 and O2 are two orthogonal matrices such that MΩ1/2 = EO1 = EO2. Then,
multiplying by E† on the left, we obtain O1 = E†EO1 = E†EO2 = O2.
Using Equation (8), one gets the following characterization of M3,r:

M3,r =MΩ1/2diag(mr)Ω
1/2M> = EOdiag(mr)O

>E>,

from which it follows that
Hr = Odiag(mr)O

>.

8

Now, one gets the r-th row of M as the singular values of Hr. Repeating these steps for all the i ∈ {1, ..., n}
will provide the full matrix M . In order to avoid ordering issues with the columns of the retrieved M , one
can use the same matrix O to diagonalize all the matrices Hi, as O is uniquely determined, because the
elements of mr are distinct. So, compute O as the singular vectors of Hr, for a certain feature r, and re-use
it for all the other features. The subsequent estimations of ω is straightforward, and can be obtained by
solving the linear system M1 =Mω. ut

Remark 6 (On the generality of the algorithm) Like other methods of moments, our algorithm re-
quires the number of topics to be smaller than the vocabulary size, k ≤ n, which is in general a realistic
requirement: in topic modeling applications one usually has thousands of words and just few tens of topics.
Also, we remark that during the construction of the algorithm we have not made any hypotheses on the
probability distribution of the data; instead, we have required the matrix M to be full rank, with at least
one feature r with different conditional expectations on the various topics. This is a realistic requirement
in most applications; for example, in the topic modeling case, it means that we need at least one word
whose probability of appearing is not exactly the same among the various topics. Also, we do not need to
know in advance what this word is, as Remark 7 will explain. This requirement is not present in the other
matrix-based methods, as they rely on a randomized matrix to guarantee the uniqueness of the results (see
Section 3.1); but the reconstruction accuracy of these methods is significantly worse than that of SVTD,
as we will show experimentally. Finding a deterministic method that joins the scalability properties of
simultaneous diagonalization methods without requiring this separation condition is an interesting open
problem.

Remark 7 (On the selection of feature r) The initial steps of the algorithm require the isolation of a
feature r to compute the matrix O. While theoretically we could select any feature r such that all elements
of mr = (µr,1, ..., µr,k) are distinct, it is clear that, if matrices M1, M2 and M3 are subject to perturbations,
the results obtained by the algorithm might vary, depending on the selected feature r. However, known
results from matrix perturbation theory (see for example Yu et al. 2015 Cor. 1, pg. 4, and Chen et al. 2012,
Thm. 3.2), indicate that the matrix O (which contains the singular vectors of Hr) is more sensitive to random
perturbations when the minimum difference between the entries of mr = (µr,1, ..., µr,k) is small. This fact
suggests that a possible heuristic to choose the feature r (and hence a reliable matrix O), is to repeat the
steps 3 and 4 of the algorithm, isolating different features and selecting the one that maximizes the quantity
mini6=j(|µr,i − µr,j |). With this heuristic, a user can run SVTD without any previous knowledge on the
feature to extract. Its cost is that of performing n times a k × k SVD, therefore O(nk3), and dominated by
the costs of other parts of the algorithm as discussed next.

Remark 8 (Complexity analysis) We start analyzing the time complexity. Using randomized SVD
techniques (see Halko et al., 2011), step 1 can be carried out with a total of O(n2k) steps, the SVD on
E†M3,r(E

>)† requires O(k3) steps while step 6 requires O(n2k) steps for matrix multiplication for each
one of the n iterations. So the overall complexity of the Algorithm 1 is

O(n2k + k3 + n3k).

We need to add the additional cost of the feature-selection method outlined in Remark 7, whose cost is
O(nk3). Since n ≥ k, this cost is dominated by the larger O(n3k) component.

It is important to highlight that the general implementation given in Algorithm 1 has mainly a descriptive
purpose. For a specific LVM, optimized implementations may exists. For the single-topic model, for example,
the method can be implemented without ever computing explicitly the tensor M3, instead computing
in one step its whitened slices Hr, with a complexity of O(Nnk), and then performing the subsequent
diagonalizations in O(n2k2) time. Computation can be further accelerated by exploiting the sparsity of
the data, that is, using sparse matrix arithmetic techniques. We also remark that the algorithm is trivially
parallelizable: Assuming that we have m machines on which to parallelize steps 5, 6, 7 of the algorithm and
the feature selection task, we can reduce the total running time to O(n2k + k3 + n3k/m).

Regarding memory, notice that we never use the full tensor M3, but only its r-th slice, for the selected
feature r. This means that only that slice has to be computed and stored, and the memory complexity of
the algorithm is O(n2).

These complexity requirements are comparable to those of the methods from Anandkumar et al. (2012a,b);
however, those methods are randomized, with nontrivial variance in their output, so they may require several
runs of the full algorithm in order to provide accurate results. The tensor power method from Anandkumar
et al. (2014) has in general higher cost. It is an iterative technique, with a number of iterations difficult
to bound a priori; the authors suggest that accuracy ε can be reached with O(k5+δ(log(k) + log log(1/ε)))

9

operations, among iterations, random restarts and actual matrix operations, higher than our O(k3). To this
time we need to add the time to get the k × k × k tensor from the sample, which is not trivial for many
LVMs.

3.1 Alternative Algorithms

Mathematically speaking, SVTD is a method to solve the system of equations (3),(4) and (5) and find
the unknown model parameters (M,ω). In theory, as Kruskal’s criterion guarantees that M3 has a unique
CP decomposition, one could simply try to directly decompose the third order moment, using for example
one of the general-purpose tensor decomposition methods described by Tomasi and Bro (2006); Kolda and
Bader (2009); Sidiropoulos et al. (2017). However this approach is impractical as M3 may be too large
(for instance in the topic modeling example, where n is quite high). Conversely, explicitly relying on the
full set of equations (3),(4) and (5) allows to find the pair (M,ω) that exactly solves those equations – a
guarantee that may not be present in general-purpose tensor decomposition algorithms – while working with
small, low dimensional tensors/matrices. For example, the whitening step that SVTD performs at step 4 of
algorithm 1, reduces the slices of M3 to a small k × k matrix, which dramatically reduces the complexity of
the algorithm. Methods of moments in the literature other than SVTD all exploit the specific structure
of Equations (3),(4) and (5) to efficiently find an optimal solution. In the rest of this section we briefly
present their characteristics – providing additional details with respect to what already mentioned in the
introduction – and compare them with SVTD.

The tensor power method (TPM) is described by Anandkumar et al. (2014). In that algorithm, the idea
is to find a matrix W (for example, the pseudoinverse of the whitening matrix E) such that W>M2W = I,
and use it to whiten the tensor M3, getting a k×k×k tensor T , from whose robust eigenvectors it is possible
to retrieve the model parameters. To get the set of the robust eigenvectors, TPM uses a three-dimensional
extension of the well-known matrix power method. While very robust, the implementation of this method
may result complex for someone who is not familiar with tensors. In addition, it is an iterative method, and
so it requires a tuning of the hyperconvergence parameters, which might require many trial-and-error tests.
These practical considerations, together with its higher time and memory complexity outlined in Remark 8,
are drawbacks compared to matrix methods.

Matrix methods (Anandkumar et al., 2012b,a), are technically more similar to the method presented
here, and they are two variations of the same approach, one (Anandkumar et al., 2012a) using eigenvectors,
and the other (Anandkumar et al., 2012b) using singular vectors. These methods take a random vector
η ∈ Rn, and observe that the matrix M3(η), defined as

(M3(η))i,j :=
n∑
l=1

((M3)i,j,lηl)

can be decomposed as follows:

M3(η) =MΩ1/2diag((ηµ>1 , ..., ηµ
>
k))Ω

1/2M>.

Then, they compute the whitening matrix E and get the matrix

Hη = E†M3(η)(E
†)>

from whose left singular vectors O they retrieve M (up to rescaling and columns reordering) solving the
following system of equations: {

MΩ1/2 = EO

Mω =M1

using essentially Equation (8). The introduction of the random vector η has the scope of guaranteeing that
the elements of (ηµ>1 , ..., ηµ>k) are almost surely distinct, and so O is unique. So, we can see that there are
essentially two main differences: the first is the fact that instead of using a randomized matrix, we fix a
specific feature r, choosing the one with the maximum minimum variation between the feature components;
in particular, this is the same of saying that we fix η to be the r − th coordinate vector, providing a recipe
for finding r in Remark 7. In this way, we provide the choice that maximizes stability. The second difference
is the fact that we do not retrieve the matrix M from Equation (8), but observing that, if ηi is the i− th
coordinate vector, then

M3(ηi) =MΩ1/2diag(mi)Ω
1/2M>

10

and so, for each i = 1, ..., n, we can find the row mi of M as the singular values of the various Hi =
E†M3(ηi)(E

†)>. In this sense, our method relies on the singular values of a SVD decomposition and not on
the singular vectors. This may explain why, in our experiments (Section 4), we find this approach much
more stable than other matrix methods.

4 Experiments

In this section we test the algorithms presented in this paper on synthetic and real-world data.

Experimental setting: All the experiments in this section have been run on a MacBook Pro with a 2.7
GHz Intel Core i5 processor and 8 GB of RAM memory. All the algorithms have been implemented in
Python 2.7 (interpreted, not compiled), using the numpy (Van Der Walt et al., 2011) library for all linear
algebra operations, including Singular Value Decomposition, for which we used numpy’s non-randomized
version 2. SVTD and the methods from Anandkumar et al. (2012a,b, 2014), used in Section 4.2, have been
implemented by the authors. For ALS, which is used in Section 4.2 as well, we have used the implementation
provided by scikit-tensor3. The implementation of LDA based on MCMC that we use in Section 4.3 is
based on the open-source LDA python package 4. All the implementations written by the authors, as well
as the code of the implementations of the competing methods, have been publicly disclosed and are freely
accessible5.

4.1 Recovering M2 and M3

Fig. 1: The x−axis of the figures represents the sizes of the synthetic text corpora, while the y−axis is Err2
for the left chart and Err3 for the right chart. Green lines represent the errors obtained with the method
presented in Theorem 1, while blue lines represent the errors obtained with the method by Zou et al. (2013)
on the same corpora.

.

In Section 2.1 we described a new estimator to recover the matrix M2 and tensor M3 from a sample,
comparing it with the methods presented in the state of the art literature from Zou et al. (2013), outlined
in Remark 3. In this section we compare, using synthetically generated data, how well the two different
methods recover M2 and M3 as a function of the sample size. To perform this experiment, we generated a
set of 1000 synthetic corpora according to the single-topic model described in Section 2.1, with different
sizes (the number of texts for each corpus); the smallest corpus contained 100 texts, the largest 10000; each
text contained a random number of words, from a minimum of 3 to a maximum of 100. For each corpus,
the values of the unknowns (M,ω) have been randomly generated by sampling a uniform distribution and
normalizing both the columns of M and the vector ω to have sum 1. From them we have been able to
obtain the theoretical values of M2 and M3 using equations (4) and (5) and to compare those values with
the one empirically estimated from data using the equations in Theorem 1 for the presented method and

2 Link to the code: https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
3 Link to the code: https://github.com/mnick/scikit-tensor
4 Link to the code: https://github.com/lda-project/lda
5 Link: https://github.com/mruffini/SpectralMethod.git

11

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html
https://github.com/mnick/scikit-tensor
https://github.com/lda-project/lda
https://github.com/mruffini/SpectralMethod.git

the method from Zou et al. (2013) for the competing one. Results appear in Figure 1, where we show how
the estimated M2 and M3, namely M̃2 and M̃3, approach the theoretical values; in particular, the chart
presents the errors

Err2 = ||M̃2 −M2||F and Err3 = ||M̃3 −M3||F

as a function of the sample size N used to find M̃2 and M̃3. We can see that the method in Theorem 1
outperforms the state-of-the-art technique; this is because it gives more weight to longer documents, where
the signal is stronger, and less to shorter ones, where the signal is noisier.

4.2 Recovering the Parameters from a Random Sample.

We now test SVTD on the task of decomposing a tensor of moments obtained from a random sample,
comparing its performance with that of existing methods. We fix a dictionary of n = 100 words with k = 5,
and, for several sample sizes comprised between N = 50 and N = 1000, we generate a random sample
X distributed as a single-topic model with parameters6 (M,ω). For each synthetic sample, we proceed as
follows:

– We estimate the values of M̃1, M̃2 and M̃3 using Theorem 1.
– We retrieve from the estimated M̃1, M̃2 and M̃3 the pair of unknowns (M̃, ω̃) using SVTD as in

Algorithm 1. We also generate alternative solutions using the decomposition algorithms from Anandkumar
et al. (2014) (“Tensor power method”, with 25 random restarts and 20 iterations per restart), from
Anandkumar et al. (2012a) (“Eigendecomposition method”) from Anandkumar et al. (2012b) (“SVD
method”), and with ALS as described by Kolda and Bader (2009) - where ALS is used to directly find
the CP decomposition of M̃3, with a random initialization and stopping after 250 iterations.

– Each time we generate a solution, we register the time in seconds employed by the various algorithms.
For each method, we represent the average time used to recover the parameters over the various runs in
Figure 2a.

– For each set of retrieved parameters (M̃, ω̃) we calculate the learning error as: Err = ‖M̃ −M‖F , where
M is the matrix used in the simulations. For each sample size, we repeat the experiment 10 times (each
time with newly generated parameters), and we plot in Figure 2b the results in function of N .

– For each run of the experiment and for each of the methods, we use the retrieved parameters to cluster
the various documents of the considered corpus, using the MAP assignment described in Remark 1. We
compare the clustering accuracy of the various methods using the Adjusted Rand Index (Hubert and
Arabie, 1985) of the partition of the data obtained with MAP assignment w.r.t. the one obtained using
the true topics. For each sample size, we repeat the experiment 10 times, and we plot in Figure 2c the
results of the analysis as a function of N .

(a) (b) (c)

Fig. 2: In Figure 2a the average running times are represented. Figures 2b and 2c contain the analysis of
the learning accuracy; in both cases the x−axis represents the size of the synthetic text corpora. In 2b the
y−axis is Err, the reconstruction error for the various tested methods, while in Figure 2c the y−axis is the
clustering accuracy. Shaded area represent the variance of the output of the experiments over 10 runs with
same sample size.

6 For each sample size, the parameters (M,ω) are randomly generated following the same procedure of the previous
experiment.

12

In Figure 2a, the average running times of the various methods are presented. In average, SVTD is 100 times
faster than ALS, 30 times faster than TPM – as a consequence of the better dependence on the number
of latent states – and it is slightly slower than other matrix based methods, due to the feature selection
process outlined in Remark 7. With respect to accuracy, Figures 2b and 2c show that SVTD and TPM are
quite comparable among themselves, being the top performers in terms of learning and clustering accuracy.

We conclude that SVTD provides learning accuracy similar to TPM while having a running time
in the order of the more inaccurate matrix-based methods. Also, it is deterministic and requires little
hyperparameter tuning. ALS has slightly worse performance in terms of learning accuracy and is far slower
than the other methods tested.

4.3 Real Data

We now test SVTD on two real-world text corpora: the list of State of the Union addresses from 1945 to 2005
and Dante’s “Divina Commedia”. In both cases, we use SVTD to learn a single-topic model and an LDA,
and compare quantitatively and qualitatively their behavior. Additionally, we compare these approaches
with a standard method to learn LDA based on Markov chain Monte Carlo (MCMC) approach, described
by Griffiths and Steyvers (2004).

4.3.1 Dante’s Divina Commedia

Dante’s “Divina Commedia” (Alighieri, 1979) is an Italian epic poem written in the first half of the 14th
century7. It narrates the imaginary trip of the main character, Dante himself, in the afterlife, guided by
Virgilio, the famous Latin poet, and Beatrice, a Florentine woman that inspired most of Dante’s works. The
storyline represents an allegorical description of death soul’s journey towards God according to medieval
world view. It begins with Dante’s travel trough the “Inferno” (Hell), where damned souls are deemed to
eternal punishment according to their sins; the journey then moves to “Purgatorio”, a seven-level mountain,
where, at each level, a capital sin (sins less serious than those punished in Hell) is allegorically described;
here souls are discounting their punishment, before finally moving to “Paradiso”, Heaven, which is visited by
Dante in the last third of the book. The book is divided into 100 chapters: 34 for Hell, 33 for Purgatory and
33 for Heaven.

We analyze the performance of SVTD on this dataset, using both the single-topic model and LDA (setting
α0 = 0.2) and fixing the vocabulary size to n = 1820 words, which corresponds to the 70% most frequent
ones8. Also, we experimentally compare the results of SVTD with a classic approach to learn LDA described
by Griffiths and Steyvers (2004) based on MCMC - setting as a stopping criterion 2000 iterations of the
sampler (which is the default value provided by the Python package we used). As a first step, we study
how the quality of the results depends on the number of topics k requested to the algorithm. To do this,
we use the various competing methods to learn a set of model parameters (M,ω), for all the values of k
between 2 and 32. For each returned pair of parameters, we evaluate the running time of the algorithm and
the average topic coherence across the various topics, displaying the results in Figure 3a ("ST SVTD" and
"LDA SVTD" represents the results of the single-topic model and LDA learned with SVTD and "LDA MC"
represents the results of LDA learned with MCMC) . The coherence (Mimno et al., 2011) of a topic in a
corpus is a quantitative indicator of the quality of a topic, and evaluates how much pairs of words that are
highly probable in a topic tend to co-occur in the texts of the corpus; a good model is expected to generate
topics with high coherence scores. Formally, the coherence of a topic µ in a corpus is defined as

Coherence(µ) =
L∑
j=2

j−1∑
i=1

log
D(wi, wj) + 1

D(wi)

where (w1, ..., wL) is the list of the L = 20 most frequent words in topic µ, D(wi) (resp. D(wi, wj)) is
the count of documents containing the word wi (resp. wi and wj). In Figure 3a, we can see that SVTD
outperforms MCMC in terms of speed and coherence. Furthermore, while the performance of SVTD remains

7 The full text can be found here: http://www.gutenberg.org/files/1012/1012-0.txt
8 We tested the same experiment with different vocabulary sizes - like 80% and 90% of the most frequent words - obtaining

with SVTD nearly identical topics.

13

http://www.gutenberg.org/files/1012/1012-0.txt

(a)

single-topic model (SVTD)

Topic 1: disse, saprai, morta, torre, maestro
(Transl.) said, will know, dead, tower, master

Topic 2: vidi, serpente, greve, maestro, sovra
(Transl.) I saw, snake, heavy, master, above

Topic 3: luce, Cristo, creata, lume, vicine
(Transl.) light, Christ, created, light, near

LDA (SVTD)

Topic 1: saprai, morta, torre, saggio, disse
(Transl.) will know, dead, tower, wise, said

Topic 2: vidi, cotai, greve, serpente, maestro
(Transl.) I saw, so many, heavy, snake, master

Topic 3: luce, creata, vicine, Cristo, lume
(Transl.) light, created, near, Christ, light

(b) (c)

Fig. 3: Figure 3a contains the topic coherence (left) of a single-topic model learned by SVTD (ST SVTD),
of an LDA learned by SVTD (LDA SVTD) and an LDA learned with MCMC (LDA MC), in function of the
number of topics k; top-right figure contains an analysis of the running times. Table 3b contains the most
relevant words (together with their English translation) of each topic learned by SVTD setting k = 3, both
for the single-topic model and for LDA, while Figure 3c, contains the topic assignment for the same two
models.

good as model grows, the coherence of MCMC degrades strongly.9 For SVTD, the single-topic model and
LDA have similar performance in terms of coherence (left chart), while the running times of LDA are
larger (right chart). From the coherence chart, we can see that k ∈ {2, 3, 4} are all good numbers of topics
for SVTD; so, we keep k = 3 and perform two additional analysis, focusing only on the models learned
with SVTD. First, we plot in Figure 3c the topic assignment for the various texts of the corpus, with the
single-topic model (top figure) using Equation (1) for the assignment, and for LDA (bottom figure), using
the approach described in Remark 4. The x−axis represents the chapter of the book: The first 34 are Hell,
35 to 67 are Purgatory, and the last 33 are Heaven, while the areas represents how much each chapter
belongs to each of the topics. It is interesting to observe that, both with the LDA and single-topic models,
each of the three topics is clearly dominant in one of the three areas of the corpus (Hell, Purgatory and
Heaven): Topic 1, is clearly dominant in Purgatory’s chapters, Topic 2 in Hell, while Topic 3 dominates
Heaven. To see that this makes sense, we print in table 3b the most relevant words of each topic, for the two
models, where the relevance (Sievert and Shirley, 2014) is and indicator of how much a word characterizes a

9 We tried to improve the quality of the topics obtained with MCMC by allowing for further iterations, but the increased
running time yielded no improvements in the coherence results.

14

topic. Formally, the relevance of a word w with respect to a topic µ and is defined as

r(w, µ) = λ log P(w|µ) + (1− λ) log P(w|µ)
P(w)

,

where P(w|µ) (resp. P(w)) is the probability of sampling w with topic µ (resp. in the overall corpus) and the
weight parameter was set to λ = 0.7. Again, the topics are similar between the LDA and single-topic models,
and are coherent with the topic assignment results. For example, the most relevant words for topic 3 are
Cristo, luce, lume, meaning Christ and light. The similarity of the topics between the LDA and single-topic
models is expected from the analysis of the coherence, where the LDA and single-topic models gave very
similar scores. An interpretation of this is the fact that Divina Commedia is close to following a single-topic
model, with each chapter dealing with a single topic.

4.3.2 State of the Union Addresses

(a)

(b)

Fig. 4: Figure 4a contains the topic coherence (left) of a single-topic model learned by SVTD (ST SVTD),
of an LDA learned by SVTD (LDA SVTD) and an LDA learned by MCMC (LDA MC), in function of the
number of topics k; top-right figure contains an analysis of the running times. Figure 4b, contains the topic
assignment for the two models learned by SVTD setting k = 18.

Every year, the president of United States of America presents a speech to a joint session of the
United States Congress, where he outlines his governative agenda, the national priorities and legislative
projects. We considered the set of N = 65 state of the union addresses presented between 1945 and
2005, and we perform the same analysis performed for the Divina Commedia corpus. Again, we keep the
70% most frequent words, obtaining a total vocabulary of n = 1184 words, and analyze topic coherence

15

and running times in Figure 4a for SVTD - using LDA ("LDA SVTD") and single-topic model ("ST
SVTD") - and MCMC - only for LDA ("LDA MC"). Again, the performance of MCMC degrades as the
model increases, while SVTD, both when learning LDA and single-topic models, keeps providing meaningful
results, always using smaller running times. From now on we will only focus on the methods leaned by SVTD.

Overall, the single-topic model presents a better coherence and smaller running times than LDA. The
coherence score for the single-topic model is maximized when we set k = 18, which is also good for LDA. We
thus fix k = 18 and present in Figure 4b the topic assignment for the two models, where the areas represent
how much each document deals with each topic. Also, Table 1 presents the most relevant words for each
topic according to the LDA and single-topic models. The topics make sense and look similar across the two
models. However, unlike the Divina Commedia case, they are not identical. For example, topic 8 for the
single-topic model looks like a mixture of topic 7 and 8 in LDA. Looking at the topic assignments in Figure
4b, we can see that speeches from the same president share similar topic assignments: for example, topic 15
is dominant for G.W. Bush, and mainly deals with terrorism and Iraq. Cold-war presidents have a strong
predominance of topics involving the Soviet Union, space missions and the Vietnam war. The two models
are often coherent, with some notable exceptions, like president Kennedy: LDA assigns him to a mixture of
topics that properly describe the challenges of cold war (LDA topics: 12, 13, 17, 18), while the single-topic
model provides a simpler characterization with speeches assigned to topics 18 (again a cold war topic) and
14 (cold war, with a focus on Europe and foreign politics).

single-topic model (SVTD)

Topic 1: dollars, 1947, 1945, estimated, reconversion
Topic 2: 21st, century, affordable, children, Medicare
Topic 3: class, work, cold, people, worked, working
Topic 4: years, people, energy, elected, congress, peace
Topic 5: 21st, challenge, children, century, parents
Topic 6: challenge, children, working, challenges, work
Topic 7: produced, care, health, kids, people
Topic 8: Vietnam, plan, recommend, deficit, numbers
Topic 9: highway, Vietnam, recommend, program, federal
Topic 10: Hussein, Saddam, intelligence, aids, weapons
Topic 11: applause, program, government, federal, people
Topic 12: benefits, democratic, economic, great, life
Topic 13: federal, government, programs, Hussein, intelligence
Topic 14: alliance, Atlantic, people, free, Europe
Topic 15: applause, terrorists, Iraq, Iraqi, terror
Topic 16: strikes, bargaining, collective, labor, management
Topic 17: space, soviet, disarmament, military, defense
Topic 18: disarmament, space, defense, soviets, military

LDA (SVTD)

Topic 1: dollars, 1947, 1945, estimated, reconversion
Topic 2: 21st, college, affordable, children, child
Topic 3: class, cold, worked, cuts, talk
Topic 4: regulations, plan, government, reducing, inflation
Topic 5: Vietnam, south, 21st, tonight, principle
Topic 6: challenge, children, working, work, challenges
Topic 7: Vietnam, south, tonight, north, conflict
Topic 8: companies, plan, deficit, invest, care
Topic 9: highway, maintenance, postal, planning, program
Topic 10: Hussein, Saddam, seniors, aids, intelligence
Topic 11: applause, Medicare, Hussein, seniors, Saddam
Topic 12: controls, demands, labor, study, initiative
Topic 13: percent, family, people, America, tonight
Topic 14: produced, care, kids, health, renew
Topic 15: applause, Iraq, terrorists, terrorist, seniors
Topic 16: collective, strikes, bargaining, management, labor
Topic 17: soviet, soviets, military, peace, disarmament
Topic 18: space, disarmament, civil, defense, Latin

Table 1: The most relevant words of each topic learned by SVTD setting k = 18, both for the single-topic
model and for LDA.

5 Conclusion and Future Work

We described a simple algorithm to learn latent variable models in polynomial time, together with novel
estimators of the moments for the single-topic model and LDA. The proposed estimators are unbiased and
outperform those coming from previous literature. The proposed tensor decomposition technique proved to
be a top performer in terms of speed and accuracy of the retrieved results. Overall, the methods proposed
in this paper provide a robust technique to learn high-dimensional latent variable models with very high
efficiency.

The main limitation of our approach - which in fact is a limitation of all methods of moments - is
that Theorems (1) and (3) only hold when data is exactly generated by the considered LVM (respectively
a single-topic model and LDA); however, real-world datasets are likely to violate model assumptions,
as they never exactly follow a specific latent variable model. When data presents outliers, or violates
model assumptions, it is not clear what a method of moments will yield. A reasonable theoretical con-
tinuation of this work consists in investigating the behavior of our method in this challenging setting,
analyzing its robustness to outliers and model misspecification. Experimental evidences confirm that SVTD
is able to provide competitive performance on real data, which may indicate its ability to deal with data
that violate model hypotheses; however a deeper theoretical study is required to better explore this possibility.

We also aim at providing a perturbation theorem - for which we already have preliminary results - studying

16

the sensitiveness of SVTD to random perturbations.

On the applications side, we are interested in applying this algorithm to learn LVM in the healthcare
analytics field, for instance to learn mixture models to perform patient clustering (Ruffini et al., 2017) and
construct disease progression models.

Acknowledgements

M. Casanellas is is partially funded by AGAUR project 2017 SGR-932 and MINECO/FEDER project
MTM2015-69135-P. R. Gavaldà is partially funded by AGAUR project 2014 SGR-890 (MACDA) and
by MINECO projects TIN2014-57226-P (APCOM) and TIN2017-89244-R (MACDA). Both authors are
partially funded by MDM-2014-0445.

Appendix

A Proofs for Section 2

A.1 Proof of Theorem 1

Proof We will prove the statements only for

E

(∑N
i=1(X

(i))h(X
(i))l∑N

i=1(ci − 1)ci

)
=

k∑
j=1

ωjµh,jµl,j .

Similar arguments hold for the other equations. It is easy to see, by conditional independence, that

E((X(i))h(X
(i))l) =

k∑
j=1

ωjE((X(i))h(X
(i))l|Y = j)

but the conditioned (X(i))h and (X(i))l are components of a multinomial distribution and so

k∑
j=1

ωjE((X(i))h(X
(i))l|Y = j) =

k∑
j=1

ωj(c
2
i − ci)µh,jµl,j ,

which implies the thesis. ut

A.2 Proof of Theorem 2

Proof We want to express the elements of the matrix M̃2 −M2 in an appropriate way and then express a bound using
McDiarmid’s inequality (McDiarmid 1989 and Lemma 1). We know by construction that, for any i ∈ {1, ..., N} it holds that

X(i) =

ci∑
j=1

x
(i)
j ,

where each x(i)j is the j-th word of the document. We thus consider the set of all the words from all the documents:

X = (x
(1)
1 , ..., x

(1)
c1 , ..., x

(N)
1 , ..., x

(N)
cN).

It is easy to see that M̃2 can be expressed as a function of X , for all pairs u, v ∈ {1, ..., n} we have

(M̃2)u,v(X) =

∑
i6=j(x

(1)
i)u(x

(1)
j)v + ...+

∑
i 6=j(x

(N)
i)u(x

(N)
j)v

C2
,

where C2 =
∑N
i=1 ci(ci − 1). We now define the following function:

Φ(X) = ||M̃2(X)−M2||F

and observe that, given two samples differing only by one element

X = (x
(1)
1 , ..., x

(1)
c1 , ..., x

(l)
i , ..., x

(N)
1 , ..., x

(N)
cN)

17

X ′ = (x
(1)
1 , ..., x

(1)
c1 , ..., x

(l)
i

′
, ..., x

(N)
1 , ..., x

(N)
cN)

we obtain the following inequality:
|Φ(X)− Φ(X ′)| ≤ ||M̃2(X)− M̃2(X ′)||F =

=

√√√√√ n∑
u,v=1

∑i6=j(x
(l)
j)u((x

(l)
i)v − (x

(l)
i

′
)v)

C2

2

≤
√
2maxj(cj)

C2
.

The inequality above enables us to apply McDiarmid’s inequality, stating that

P(||M̃2 −M2||F > E(||M̃2 −M2||F) + ε) ≤ e
−

ε2C2
2

(maxj(cj))
2C1 = e−t

2
,

where we defined
t =

εC2

maxj(cj)
√
C1

.

We now provide a bound for E(||M̃2 −M2||F). We begin observing that M̃2 =
∑N
i=1 wiM̃2

(i), where wi =
ci(ci−1)
C2

and

M̃2
(i) are independent matrices defined as follows:

(M̃2
(i)

)(u,v) =

∑
l 6=j(x

(i)
l)u(x

(i)
j)v

ci(ci − 1)
.

Notice that, for any i, E(M̃2
(i)

) =M2. Using Jensen’s inequality we have

E(||M̃2 −M2||F) ≤
√

E(||M̃2 −M2||2F).

This last term is equal to

√
E(||M̃2||2F)− ||M2||2F =

√√√√∑
u,v

E((
N∑
i=1

wi(M̃2
(i)

)(u,v))
2)− ||M2||2F =

=

√√√√∑
u,v

E(
N∑
i=1

w2
i (M̃2

(i)
)2
(u,v)

) +
∑
u,v

E(
∑
i 6=j

wjwi(M̃2
(i)

)(u,v)(M̃2
(j)

)(u,v))− ||M2||2F

and using the fact that E(M̃2
(i)
(u,v)M̃2

(j)
(u,v)) = (M2)2(u,v), this equals√√√√ N∑
i=1

w2
i E(||M̃2

(i)||2F) +
∑
i 6=j

wjwi||M2||2F − ||M2||2F .

Now using that ||M̃2
(i)||F ≤ 1, we can bound this from above by√√√√ N∑

i=1

w2
i + ||M2||2F (

∑
i6=j

wjwi − 1) =

√√√√ N∑
i=1

w2
i (1− ||M2||2F).

where in the last equality we used the fact that
∑
i 6=j wjwi = 1 −

∑N
i=1 w

2
i . So, if we call W (N)

2 =
∑N
i=1 w

2
i , we have

E(||M̃2 −M2||F) ≤
√
W

(N)
2 (1− ||M2||2F), from which we obtain

P(||M̃2 −M2||F >

√
W

(N)
2 (1− ||M2||2F) + t

maxj(cj)
√
C1

C2
) ≤ e−t

2
.

In conclusion, we can state that if e−t
2
= δ we get, for any δ ∈ (0, 1]

P(||M̃2 −M2||F > ε) ≤ δ

where

ε =

√
W

(N)
2 (1− ||M2||2F) +

√
log(

1

δ
)
maxj(cj)

√
C1

C2
.

A similar argument works for M3. ut

Lemma 1 (McDiarmid’s inequality McDiarmid 1989.) Let X1, ..., Xm be independent random variables all taking
values in the set C. Furthermore, let f : Cm → R be a function of X1, ..., Xm satisfying for all i and for all x1, ..., xm, x′i ∈ C ,

|f(x1, ..., xi, ..., xm)− f(x1, ..., x′i, ..., xm)| ≤ ci.

Then for all ε > 0,

P(f − E[f] ≥ ε) ≤ exp(−
2ε2∑m
i=1 c

2
i

).

18

References

Alighieri, D. (1979). La Divina Commedia, a cura di N. Sapegno. Nuova Italia, Firenze.
Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decompositions for learning latent

variable models. Journal of Machine Learning Research, 15(1):2773–2832.
Anandkumar, A., Hsu, D., and Kakade, S. M. (2012a). A method of moments for mixture models and Hidden Markov

models. In COLT, volume 1, page 4.
Anandkumar, A., Liu, Y.-k., Hsu, D. J., Foster, D. P., and Kakade, S. M. (2012b). A spectral algorithm for Latent Dirichlet

Allocation. In NIPS, pages 917–925.
Appellof, C. J. and Davidson, E. R. (1981). Strategies for analyzing data from video fluorometric monitoring of liquid

chromatographic effluents. Analytical Chemistry, 53(13):2053–2056.
Balle, B., Hamilton, W. L., and Pineau, J. (2014). Methods of moments for learning stochastic languages: Unified presentation

and empirical comparison. In ICML, pages 1386–1394.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research,

3(Jan):993–1022.
Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multidimensional scaling via an n-way

generalization of “eckart-young” decomposition. Psychometrika, 35(3):283–319.
Chaganty, A. T. and Liang, P. (2013). Spectral experts for estimating mixtures of linear regressions. In ICML, pages

1040–1048.
Chen, X. S., Li, W., and Xu, W. W. (2012). Perturbation analysis of the eigenvector matrix and singular vector matrices.
Taiwanese Journal of Mathematics, 16(1):pp–179.

Chiantini, L., Ottaviani, G., and Vannieuwenhoven, N. (2017). On generic identifiability of symmetric tensors of subgeneric
rank. Transactions of the American Mathematical Society, 369(6):4021–4042.

Colombo, N. and Vlassis, N. (2016). Tensor decomposition via joint matrix schur decomposition. In ICML.
Comon, P., Qi, Y., and Usevich, K. (2017). Identifiability of an x-rank decomposition of polynomial maps. SIAM Journal

on Applied Algebra and Geometry, 1(1):388–414.
De Lathauwer, L., De Moor, B., and Vandewalle, J. (2004). Computation of the canonical decomposition by means of a

simultaneous generalized schur decomposition. SIAM journal on Matrix Analysis and Applications, 26(2):295–327.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm.

Journal of the Royal Statistical Society. Series B (methodological), pages 1–38.
Ge, R., Huang, Q., and Kakade, S. M. (2015). Learning mixtures of gaussians in high dimensions. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 761–770. ACM.
Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl

1):5228–5235.
Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions. SIAM review, 53(2):217–288.
Harshman, R. A. (1970). Foundations of the parafac procedure: Models and conditions for an" explanatory" multimodal

factor analysis.
Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Studies in Applied Mathematics,

6(1-4):164–189.
Hitchcock, F. L. (1928). Multiple invariants and generalized rank of a p-way matrix or tensor. Studies in Applied Mathematics,

7(1-4):39–79.
Hsu, D. and Kakade, S. M. (2013). Learning mixtures of spherical Gaussians: moment methods and spectral decompositions.

In ITCS, pages 11–20. ACM.
Hsu, D., Kakade, S. M., and Zhang, T. (2012). A spectral algorithm for learning Hidden Markov models. Journal of
Computer and System Sciences, 78(5):1460–1480.

Huang, F., Perros, I., Chen, R., Sun, J., Anandkumar, A., et al. (2014). Scalable latent tree model and its application to
health analytics. arXiv preprint arXiv:1406.4566.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218.
Jain, P. and Oh, S. (2014). Learning mixtures of discrete product distributions using spectral decompositions. In COLT,

pages 824–856.
Kolda, T. G. (2001). Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Applications, 23(1):243–255.
Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3):455–500.
Kruskal, J. B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic

complexity and statistics. Linear algebra and its applications, 18(2):95–138.
Kuleshov, V., Chaganty, A., and Liang, P. (2015). Tensor factorization via matrix factorization. In AISTATS, pages 507–516.
Leurgans, S., Ross, R., and Abel, R. (1993). A decomposition for three-way arrays. SIAM Journal on Matrix Analysis and

Applications, 14(4):1064–1083.
McDiarmid, C. (1989). On the method of bounded differences. Surveys in combinatorics, 141(1):148–188.
Mimno, D., Wallach, H. M., Talley, E., Leenders, M., and McCallum, A. (2011). Optimizing semantic coherence in topic

models. In Proceedings of the conference on empirical methods in natural language processing, pages 262–272. Association
for Computational Linguistics.

Newman, D., Asuncion, A., Smyth, P., and Welling, M. (2009). Distributed algorithms for topic models. Journal of Machine
Learning Research, 10(Aug):1801–1828.

Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society
of London. A, 185:71–110.

Qi, Y., Comon, P., and Lim, L.-H. (2016). Semialgebraic geometry of nonnegative tensor rank. SIAM Journal on Matrix
Analysis and Applications, 37(4):1556–1580.

Ruffini, M., Gavalda, R., and Limon, E. (2017). Clustering patients with tensor decomposition. In Proceedings of the 2nd
Machine Learning for Healthcare Conference, volume 68 of Proceedings of Machine Learning Research, pages 126–146.

Sanchez, E. and Kowalski, B. R. (1990). Tensorial resolution: a direct trilinear decomposition. Journal of Chemometrics,
4(1):29–45.

19

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E., and Faloutsos, C. (2017). Tensor decomposition
for signal processing and machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582.

Sievert, C. and Shirley, K. E. (2014). Ldavis: A method for visualizing and interpreting topics. In ACL workshop on
interactive language learning, visualization, and interfaces.

Song, L., Xing, E. P., and Parikh, A. P. (2011). A spectral algorithm for latent tree graphical models. In ICML, pages
1065–1072.

Stewart, G. (1990). Perturbation theory for the singular value decomposition. In In SVD and Signal Processing, II:
Algorithms, Analysis, and Applications.

Tomasi, G. and Bro, R. (2006). A comparison of algorithms for fitting the parafac model. Computational Statistics & Data
Analysis, 50(7):1700–1734.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311.
Van Der Veen, A.-J. and Paulraj, A. (1996). An analytical constant modulus algorithm. IEEE Transactions on Signal

Processing, 44(5):1136–1155.
Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22–30.

Yu, Y., Wang, T., Samworth, R. J., et al. (2015). A useful variant of the davis–kahan theorem for statisticians. Biometrika,
102(2):315–323.

Zhang, T. and Golub, G. H. (2001). Rank-one approximation to high order tensors. SIAM Journal on Matrix Analysis and
Applications, 23(2):534–550.

Zou, J. Y., Hsu, D. J., Parkes, D. C., and Adams, R. P. (2013). Contrastive learning using spectral methods. In Advances
in Neural Information Processing Systems, pages 2238–2246.

20

	Introduction
	Moments Estimation for Latent Variable Models
	Singular Value based Tensor Decomposition
	Experiments
	Conclusion and Future Work
	Proofs for Section 2

