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Abstract. In this paper we study periodical stochastic processes, and we de-

fine the conditions that are needed by a model to be a good noise model on
the circumference. The classes of processes that fit the required conditions

are studied together with their expansion in random Fourier series in order

to provide results about their path regularity. Finally, we discuss a simple
and flexible parametric model with prescribed regularity that is used in appli-

cations, and we prove the asymptotic properties of the maximum likelihood

estimates of model parameters.

1. Introduction

1.1. Literature review. Modeling the random boundaries of star-shaped planar
objects is a topic that is receiving an increasing interest in recent times. Some exam-
ples can be found in neurology (see Hobolth (2003) and the references therein), ge-
ography Burrough and Frank (1996), stereology (see Hobolth et al (2003); Hobolth
and Vedel Jensen (2002) and the references therein), fractal geometry analysis (see
Dioguardi et al (2003) and the references therein).

A common way to model such a phenomena is to model the radius-vector func-
tion as a periodic stochastic process from an interval to R; a detailed geometric
description of this model is provided in van Lieshout (2013). In such a framework,
the radius of the star-shaped planar object is a periodic and continuous function,
as a function of the independent variable, representing the angle.

A very standard and well known model that apparently suits these needs is
the Brownian Bridge. The Brownian bridge is a universally known model, used
in several areas of applied mathematical science. As only an example, the recent
publication of Kroese et al (2011); Manganaro (2011) and the reference therein
provide a huge relevant literature, while Bass (2011) provide a theoretical analysis
of such a process. The main aspect of the Brownian bridge is its periodicity, that
makes this process a good model for a noise on the finite domain [0, 1]. On the other
hand, a deficiency of this model is its non-stationarity, which is almost a must when
one models pure noise. This is due to the fact that Brownian bridge is assumed to
be 0 at t = 0.

A second approach that is being obtaining success in recent time, is to exploit
the asymptotic results of the random Fourier series to provide general models for
the boundaries of star-shaped objects. In Hobolth et al (2003) the authors propose
a parametric random Fourier series model (called generalized p-order model) to
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describe the border of random planar star-shaped objects in terms of normalized
radius-vector function. Again, in Hobolth et al (2003), the authors also provided
results about sample path regularity, and an expression for the maximum likelihood
function for the model parameters, even if there are not asymptotic results about
these estimators.

1.2. Overview and insights of the paper. In this paper we deal with the second
approach, using random Fourier series as a flexible modeling tool, finding interest-
ing properties of the studied processes thanks to the standard representation they
provide.

First, we define the theoretical conditions that are needed by a process to be a
good noise model on the boundary of a circle, admitting models with a fixed zero
value in the origin only as the conditioning of such a process, as the result of a
selective sampling. More precisely, two classes of processes are considered:

• H , the set of Gaussian, stationary, [0, 1]-periodic processes;
• H0, the set of processes generated by a process in H conditioned to be 0

when t = 0.

Then, we remark that the Brownian Bridge is not contained in H0. Further-
more, we find a standard Fourier decomposition for a process {xt}t∈[0,1] in H , by

expressing its covariance function C(s, t) as C(s, t) = c20+2
∑∞
k=1 c

2
k cos(2kπ(s− t)).

Thanks to Karhunen-Loève’s theorem, the process {xt}t∈[0,1] may be represented
as

xt = c0Y
′
0 +

∞∑
k=1

ck(Yksk(t) + Y ′kck(t))

where {Yk}k≥1 and {Y ′k}k≥0 are two independent sequences of independent standard
Gaussian variables.

As a consequence, we prove that:

• the random Fourier series expansion of a process in H0 shares the same
asymptotic behavior for the spectrum with its generator in H ;
• the path regularity of a process in H0 depends on path regularity of its

generator in H ; in particular we show that the regularity properties of the
trajectories of a process in H and of its generated process in H0 have the
same lower bound in terms of Hölder regularity;
• the path regularity of a process in H (and of its generated process in

H0) can be deduced by the Fourier coefficients of the generator process
covariance function, looking at their decrease rate. In particular, we show
that, for any 0 < α ≤ 1,

c2k = O(1/k1+2m+α) =⇒ {xt}t∈[0,1] ∈ Cm,β([0, 1]), with β < α/2,

where Cm,β([0, 1]) is the Hölder space of the functions on [0, 1] having
continuous derivatives up to order m and such that the mth-derivative is
Hölder continuous with exponent β.
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Figure 1.1. Parametric model in H , where path regularity is
determined by the parameter p.

Finally, as in Hobolth et al (2003), we discuss a general and flexible parametric
model in H :

xt =

N∑
k=1

a

kp
(Yk sin(2kπt) + Y ′k cos(2kπt)),

together with the generated model in H0. We underline that

• these models provide a very easy way to represent stochastic processes in
computer memory, where only a finite number of coefficient may be stored.
In addition, the representation of the first one is built on a finite dimensional
subspace made by only trigonometric functions;
• the path regularity of {xt}t∈[0,1] is determined by its parameters, see Fig-

ure 1.1;
• we provide maximum likelihood estimates for the first model, together with

asymptotic properties of the estimators.

Summing up, these models can be very useful in the applications: on one hand
they might shape particular characteristics of the observed phenomena, allowing on
the other hand properties similar to the Brownian bridge when these are needed,
but with a stronger theoretical support.

1.3. Structure of the paper. In Section 2 we define the two classes of interest, H
and the space of conditioned processes H0, studying their properties and analyzing
their random Fourier series expansion. In Section 3 we show the connection between
the spectrum of the processes in H0 with respect to their generators in H . In
Section 4 it is proven that also the path regularity is maintained for such couples,
as a consequence of Kolmogorov’s continuity conditions and a result of Boas. In
Section 5 simple parametric models in H and H0 are presented, together with the
properties of the maximum likelihood estimators for the parameters.

Summary of notations. The variables s, t, . . . relate to time variables, and will of-
ten belong to [0, 1]. We denote by {xt}t∈[0,1], {yt}t∈[0,1], . . . stochastic adapted pro-
cess defined on a given filtered space (Ω,F , {Ft}t∈[0,1],P), while {Xn}n≥1, {Yn}n≥1,
{Zn}n≥1, . . . are sequences of random variables. C(s, t) is a positive semidefinite
function (it will be the correlation function of a stochastic process). When a pro-
cess has stationary increments, its covariance function will often be replaced by
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the associated covariogram function C̃(t − s) = C(s, t). The sequence {ek(t)}k≥0

denotes a sequence of orthogonal function on L2([0, 1]). Finally, we denote by [|t|]1
the fractional part of the real number t, that is the sawtooth wave defined by the
formula [|t|]1 = t− floor(t).

2. Preliminaries and Karhunen-Loève’s decomposition theorem

In this section we recall some basic results from Gaussian processes theory.
The first theorem we need is the Karhunen-Loève’s decomposition theorem (see
Karhunen (1947)), that states what follows.

Theorem 2.1 (Karhunen-Loève). Let {xt}t∈[0,1], such that E[xt] ≡ 0, and Cov(xt, xs) =

C(t, s), continuous in both variables. Then xt =
∑∞
k=1 Zk ek(t), where

• the functions {ek(·)}k≥1 are the eigenfunctions of the following integral op-
erator from L2[0, 1] in itself

f ∈ L2[0, 1] −→ g(t) =

∫ 1

0

C(t, τ)f(τ)dτ, (2.1)

and {ek(·)}k≥1 form an orthonormal basis for the space spanned by the
eigenfunctions corresponding to nonzero eigenvalues;

• the random variables Z1, Z2, . . . are given by Zk =
∫ 1

0
xtek(t)dt and form a

zero-mean orthogonal system (i.e., E(ZkZj) = 0 for k 6= j) with variance
λ2
k, where λk is the eigenvalue corresponding to the eigenfunction ek(·).

The series
∑∞
k=1 Zkek(t) converges in mean square to xt, uniformly in t:

sup
t∈[0,1]

E
([
xt −

∞∑
k=1

Zkek(t)
]2) −→

n→∞
0.

Finally, xt is a Gaussian process if and only if {Zn}n≥1 is a sequence of independent
Gaussian random variables.

2.1. Representation of the set H with respect to the Fourier basis {sk(t), ck(t)}k≥0.
We deal in this paper with the following class H of processes, thought of as the
set of ‘pure Gaussian noises’ on the circumference.

Definition 2.2. Let {xt}t∈[0,1] be a stochastic process with covariance function
C(s, t) = Cov(xt, xs). H is the set of real Gaussian stochastic processes {xt}t∈[0,1]

such that

zero-mean:: E(xt) = 0, ∀t ∈ [0, 1];

continuously stationary:: there exists a continuous real function C̃ such
that C(s, t) = C̃(s− t), ∀s, t ∈ [0, 1];

periodic:: {xt}t∈[0,1] admits a periodic extension to R (i.e. x0 = x1, a.s.).

Remark 2.3. A necessary and sufficient condition for a continuously stationary
process to be periodic is that C̃(1) = C̃(0). This allows a continuous version of the
process with V ar(xt+1 − xt) = 0 for any t ∈ R. We remark that if {xt}t∈[0,1] ∈H

and if C̃(s− t) = C(s, t) is its covariogram function, then C̃(t) = C̃(t+ 1).

The set H is a Hilbert space, when it is equipped with the inner product given by

〈x(·), y(·)〉 =
∫ 1

0
E(xtyt)dt. Karhunen-Loève’s decomposition theorem can be spe-

cialized to H , in order to show that a process is in H if and only if it can be written
as limit of a canonical trigonometric random series, namely the constant function
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equal to 1 together with the sequence {sk(t), ck(t)}k≥1, where sk(t) =
√

2 sin(2kπt)

and ck(t) =
√

2 cos(2kπt).

Theorem 2.4. Let {xt}t∈[0,1] ∈ H with covariance C(s, t) = C̃(t − s); then in
mean square, uniformly in t,

xt = c0Y
′
0 +

∞∑
k=1

ck(Yksk(t) + Y ′kck(t))

where {Yk}k≥1 and {Y ′k}k≥0 are two independent sequences of independent standard
Gaussian variables, and {ck}k≥0 ∈ `2 is such that

c2n =

∫ 1

0

C̃(s) cos(2nπs)ds, n = 0, 1, 2, . . .

Proof. See Appendix A. � �

Theorem 2.5. Let {Yk}k≥1 and {Y ′k}k≥0 be two independent sequences of inde-
pendent standard Gaussian variables, and {ck}k≥0 ∈ `2. Then the sequence

y
(n)
t = c0Y

′
0 +

n∑
k=1

ck(Yksk(t) + Y ′kck(t))

converges in mean square, uniformly in t to {yt}t∈[0,1] ∈H . Moreover if C(s, t) is

the covariance function of yt , then uniformly, absolutely and in L2[0, 1]× [0, 1],

C(s, t) = c20 +

∞∑
k=1

c2kck(s)ck(t) +

∞∑
k=1

c2ksk(s)sk(t)

= c20 + 2

∞∑
k=1

c2k cos(2kπs) cos(2kπt) + 2

∞∑
k=1

c2k sin(2kπs) sin(2kπt)

= c20 + 2

∞∑
k=1

c2k cos(2kπ(s− t)).

(2.2)

Proof. See Appendix A. � �

Remark 2.6. As a consequence of Theorem 2.4 and Theorem 2.5, we can observe
that periodic processes with period 1

m have only terms of form mk in their expan-
sion:

xt+ 1
m

= c0Y
′
0 +

∞∑
k=1

cmk(Ymksmk(t+ 1
m ) + Y ′mkcmk(t+ 1

m )) = xt.

More fancy processes having only odd terms are antiperiodic with period 1
2 , i.e.

xt+ 1
2

=

∞∑
k=0

c2k+1(Y2k+1s2k+1(t+ 1
2 ) + Y ′2k+1c2k+1(t+ 1

2 )) = −xt.

An immediate consequence of this remark is that when one needs to model a pure
noise on the boundary of a circle, then he must choose processes whose expansion
has both odd and even terms.



6 G. ALETTI AND M. RUFFINI

2.2. The quotient set HZ . It is easy to see that H can be seen as a Hilbert
space, isometrically equivalent to the space of the coefficients `2; let us consider two
independent sequences {Ȳn}n≥1 and {Ȳ ′n}n≥0 of independent standard Gaussian
variables. For each {zt}t∈[0,1] ∈ H , there exists an {xt}t∈[0,1] ∈ HZ having the
same law, where

HZ =
{
{xt}t∈[0,1] ∈H : xt = a0Ȳ ′0 +

∞∑
k=1

ak(Ȳksk(t) + Ȳ ′kck(t)), {an}n≥0 ∈ `2
}

and the limit is in mean square and uniformly in t. From Theorem 2.4 and The-
orem 2.5 it is naturally defined an isometry between the representative space HZ

and `2:

xt = a0Ȳ ′0 +

∞∑
k=1

ak(Ȳksk(t) + Ȳ ′kck(t))←→ {a0,
√

2a1,
√

2a2,
√

2a3, . . .} ∈ `2,

where ‖xt‖HZ
=
√
a2

0 + 2
∑
n a

2
n.

2.3. The space H0 and its relation with HZ . By Theorem 2.5 given {ci}i≥0 ∈
`2, there exists a unique {xt}t∈[0,1] ∈HZ , with covariance function given by

C(s, t) = c20 +

∞∑
k=1

c2kck(s)ck(t).

Let us define the set H0 of the process generated by those in H conditioned to
be 0 at t = 0.

Definition 2.7. Let H0 be the following set

H0 = {{yt}t∈[0,1] : ∃{xt}t∈[0,1] ∈H such that

L ((yt1 , . . . , ytn)) = L ((xt1 , . . . , xtn)|x0 = 0), ∀t ∈ [0, 1]n, n ∈ N}.
We call:

Generator process:: the process {xt}t∈[0,1] ∈H ;
Generated process:: the process {yt}t∈[0,1] ∈H0.

In other words, the process {xt}t∈[0,1] ∈HZ , conditioned to be 0 at t = 0, is the
periodic zero-mean Gaussian process {yt}t∈[0,1] ∈H0 with covariance function

R(s, t) = C(s, t)− C(s, 0)C(0, t)

C(0, 0)
. (2.3)

It is easy to show that {yt}t∈[0,1] /∈H because it is not stationary. However, the

function R(s, t) is symmetric, and hence it is the L2-limit of its 2-D Fourier series.
With the notation given above, with c0(t) = 1, we get the series expansion:

R(s, t) =

∞∑
k,j=0

rcckjck(s)cj(t)+

∞∑
k,j=1

rsskjsk(s)sj(t)+

∞∑
k=1,j=0

rsckjsk(s)cj(t)+

∞∑
k=0,j=1

rcskjck(s)sj(t).

(2.4)
The following theorem gives a necessary and sufficient condition for a process

{yt}t∈[0,1] with covariance function R(s, t) to have a unique process {xt}t∈[0,1] ∈HZ

which generates it. The trivial case when R(s, t) = 0 (generated by a constant
process) is omitted since it is the sole case when the solution is not unique. The
proof may be found in Appendix A.



NOISE MODELS ON THE CIRCUMFERENCE 7

Theorem 2.8. For any Gaussian process {yt}t∈[0,1] such that y0 = 0, E(yt) = 0
and continuous covariance function R(s, t) 6= 0, there exists a unique (in law)
stationary process {xt}t∈[0,1] ∈ HZ which generates {yt}t∈[0,1] if and only if the
Fourier coefficients of R(s, t) satisfy:

• the mixed matrices cos− sin and sin− cos are null:

{rcsjk}j≥0,k≥1 = {rscjk}j≥1,k≥0 = 0;

• the sin− sin matrix is a non-negative diagonal in `1:

{rssjk}j,k≥1 =


rss11 0 0 0 · · ·
0 rss22 0 0 · · ·
0 0 rss33 0 · · ·
. . . . . . . . . . . . . . . . . . . . .

 ,

with rsskk ≥ 0 and rcc00 < r̄ =
∑
k r

ss
kk <∞;

• defined rss00 =
rcc00r̄
r̄−rcc00

, the cos− cos matrix is built from the sin− sin matrix

and rcc00:

{rccjk}j,k≥0 =


rss00 0 0 0 · · ·
0 rss11 0 0 · · ·
0 0 rss22 0 · · ·
. . . . . . . . . . . . . . . . . . . . .

− r̄ − rcc00

r̄2


rss00r

ss
00 rss00r

ss
11 rss00r

ss
22 · · ·

rss11r
ss
00 rss11r

ss
11 rss11r

ss
22 · · ·

rss22r
ss
00 rss22r

ss
11 rss22r

ss
22 · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

Remark 2.9. One of the models mainly used for periodic noise is the Brownian
bridge, i.e. the process {Bt}t∈[0,1] such that Bt = Wt − tW1, where {Wt}t∈[0,1]

is a Brownian motion. This process is Gaussian, periodic and has the following
standard representation in Fourier random series:

Bt =

∞∑
k=1

Zk

√
2 sin(kπt)

kπ
,

where Z1, Z2, . . . are independent identically distributed standard normal random
variables. Starting from the results explained in this section, it is straightforward
to prove that {Bt}t∈[0,1] /∈ H0; so we cannot consider it a “good” noise model on
the boundary of a circle.

3. A process in H0 shares the same asymptotic behavior for the
spectrum with its generator

We want to get information about Fourier coefficients of Karhunen-Loève expan-
sion for processes in H0 with respect to the coefficients of their generators in H . To
do this, as described in the Theorem 2.1, it is sufficient to study the spectrum of the
integral operator induced by the covariance function of the process {yt}t∈[0,1] ∈H0

generated by {xt}t∈[0,1] ∈H .

Theorem 3.1. Denote by {yt}t∈[0,1] a process in H0 and by {xt}t∈[0,1] its generator

in H . Let {cn}n≥0 ∈ `2 be the sequence of Fourier coefficients of Karhunen-Loève
expansion of the process {xt}t∈[0,1], such that, as in Theorem 2.4 and Theorem 2.5,

xt = c0Y
′
0 +

∞∑
k=1

ck(Yksk(t) + Y ′kck(t)).
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Then the Karhunen-Loève expansion of the process {yt}t∈[0,1] has the following
form:

yt =

∞∑
k=0

(ckYksk(t) + c̃kY
′
kfk(t))

where fk(t) is the eigenfunction related to the eigenvalue ãn = c̃2n, and, for all
n ∈ N,

akn = ãkn = akn+1
if akn = akn+1

akn > ãkn > akn+1 if akn = akn+1

where {akn}n≥0 is a decreasing reordering of the sequence {an}n≥0.

Proof. See Appendix B. � �

Remark 3.2. Theorem 2.8 and Theorem 3.1 give a theoretical approach to build
the Karhunen-Loève expansion of processes in H0. A numerical example of such a
procedure may be fond in the example of the Section 5.

4. A process in H0 shares the same path regularity properties with
its generator

We showed in Theorem 3.1 that a process in H0 and its generator in H share
the same asymptotic behavior for the spectrum. In this section, we show that the
regularity of the paths is also maintained.

4.1. Hölder regularity of the paths of processes in H and in H0. We first
remind that the Hölder space Cm,α([0, 1]), where m ≥ 0 is an integer and 0 < α ≤ 1,
consists of those functions on [0, 1] having continuous derivatives up to order m and
such that the mth-derivative is Hölder continuous with exponent α. We recall a
classic regularity theorem.

Theorem 4.1 (Kolmogorov-Centsov continuity criterion, Revuz and Yor (1999)).
Let {xt}t∈[0,1] be a real stochastic process such that there exist three positive con-
stants γ, c and ε so that

E
(
|xt − xs|γ

)
≤ c|t− s|1+ε;

then there exists a modification {x̃t}t∈[0,1] of {xt}t∈[0,1], such that

E
((

sup
s6=t

|x̃t − x̃s|
|t− s|α

)γ)
<∞

for all α ∈ [0, εγ ); in particular the trajectories of {x̃t}t∈[0,1] belongs to C0,α([0, 1]).

The following results are an immediate consequence of this last theorem (proofs
may be found in Appendix C), where the processes {x̃t}t∈[0,1] and {ỹt}t∈[0,1] are
thought modified as in the Theorem 4.1.

Theorem 4.2. Let {xt}t∈[0,1], a stationary stochastic process with null expectation,

and let R(s, t) be its covariance function; if R ∈ C0,α([0, 1]× [0, 1]), with 0 < α ≤ 1,
then almost all trajectories of {xt}t∈[0,1] belong to C0,β([0, 1]) with β < α

2 .
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It is simple to apply this last theorem to processes laying in H and in H0:
assume that {xt}t∈[0,1] ∈ H and let C(s, t) = C̃(s − t) be its covariance function.

If C̃ ∈ C0,α([0, 1]), then almost all trajectories of {x̃t}t∈[0,1] belong to C0,β([0, 1]),
for any β < α

2 . The same argument can be applied to H0 processes.
In fact we can say something more.

Theorem 4.3. Let {xt}t∈[0,1] ∈ H and let C(s, t) = C̃(s − t) be its covariance
function. Consider its generated process {yt}t∈[0,1] ∈ H0, and let R(s, t) be its
covariance function. Then we have, for any β < α

2 ,

C̃ ∈ C0,α([0, 1])⇒ R ∈ C0,α([0, 1]× [0, 1])⇒
{
{ỹt}t∈[0,1] ∈ C0,β([0, 1])
{x̃t}t∈[0,1] ∈ C0,β([0, 1])

This last result implies that regularity properties of almost all trajectories of
{x̃t}t∈[0,1] and of its generated process {ỹt}t∈[0,1] have the same lower bound, ob-
tained by studying regularity of their covariance function.

4.2. Upper order regularity. In Section 2.2, a sequence in `2 is uniquely associ-
ated to each stochastic process in H . We are now showing how the decrease rate
of such sequence ia associated with the regularity of the process trajectory path.

A very useful result for our analysis will be the following one, whose proof may
be found in Lorentz (1948).

Theorem 4.4 (Boas’ Theorem). Let f ∈ L1[0, 1] be a function whose Fourier
expansion has only nonnegative cosine terms, and let {an}n≥0 be the sequence of
its cosine coefficient. Then

f ∈ C0,α([0, 1])⇐⇒ ak = O
( 1

kα+1

)
.

Boas’ Theorem may be used in connection with Theorem 2.4 and Theorem 2.5
to deduce more regularity properties of the processes in H , since C̃ is a function
whose Fourier expansion has only nonnegative cosine terms. In fact, take {cn}n≥0

as in Theorem 2.4 and Theorem 2.5. From Boas’ Theorem we have that if k2c2k =

O( 1
k1+α ) for 0 < α ≤ 1, then C̃ ∈ C2,α([0, 1]) . This link between the regularity of

C̃ and the paths of {xt}t∈[0,1] is underlined in the following theorem. The proof is
in the Appendix C.

Theorem 4.5. With the notations of Theorem 2.5, if c2k = O( 1
k3+α ), then there

exists a version of {xt}t∈[0,1] whose trajectories belong to C1,β([0, 1]), with β < α
2 .

A natural generalization of this result is the following corollary, exemplified in
Figure 4.2.

Corollary 4.6. With the notations of Theorem 2.5, if there exist an m ∈ N such
that c2k = O(1/k1+2m+α) then there exists a version of {xt}t∈[0,1] whose trajectories

belongs to Cm,β([0, 1]), with β < α
2 .

5. A parametric model in H and in H0

Results provided in this paper suggests to create a Gaussian parametric family
of stationary and periodic processes of arbitrary regularity. In fact, let us consider
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Figure 4.2. Change of path regularity: a comparison between
trajectories of processes for fixed i.i.d. gaussian {Yk, Y ′k}k≥0 and
varying the magnitude of {ck}k≥0. Left: parametric model in H
given in (5.1), where a = 1.5 (dilation coefficient, fixed) and vary-
ing p. Right: parametric model in H0 given in (5.2), obtained by
conditioning the model (5.1) to be 0 at t = 0. The coefficients
{c̃k}k≥0 and the eigenbase {fk}k≥0 of the model are obtained as
explained in Section 5. As a consequence of the Corollary 4.6, each
trajectory belongs to Cm,β([0, 1]), where m+β < 2p−1. The series
are truncated at N = 40.

the following family of processes in H :

xt =

N∑
k=1

a

kp
(Yk sin(2kπt) + Y ′k cos(2kπt)). (5.1)

This family is the discrete approximation of the model given in Hobolth et al
(2003), obtained when N goes to infinite. We note that for this limiting pro-
cess, Theorem 4.2 states that the paths become more regular as p increases. This
property is shown in Figure 4.2 (left), which suggests how to smooth a process by
changing p.

By Theorem 2.8, it is possible to build a parametric model in H0 of the form
given in the Theorem 3.1

xt =

N∑
k=1

a

kp
Yk sin(2kπt) +

N∑
k=0

c̃kY
′
kfk(t). (5.2)

The functions {fk(t)}k≥0 are the eigenfunctions of the cos− cos part of the co-
variance function R(s, t) given in (2.4). To find an approximation of these first
eigenfunctions, given

Rcc(s, t) =

N∑
k,j=0

Rcckjck(s)cj(t),

we may find the spectral representation of the cos− cos matrix Rcc = UDUT , with

D diagonal and U unitary. Then c̃k =
√
Dkk and fk(t) =

∑N
j=0 Ujkcj(t).

Model (5.1) gives a family of Gaussian processes. In application, maximum
likelihood estimates of a and p is a straightforward consequence of a fast Fourier
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transform of the observed discretized process {xt}t∈[0,i/n], i = 0, . . . , n. The prop-
erties of these estimators are studied in the following section.

5.1. Maximum likelihood estimators of (5.1). Given (xt0 , xt1 , . . . , xtn) sam-
pled from (5.1), we want to find the property of the maximum likelihood estimator
(â, p̂) of the parameters (a, p).

More precisely, with a equispaced or nonequispaced Fourier transform (see, e.g.,
Brigham (1982); Dutt and Rokhlin (1993)), we first transform (xt0 , xt1 , . . . , xtn)

into (y
(1)
1 , y

(1)
2 , . . . , y

(1)
n ) and (y

(2)
1 , y

(2)
2 , . . . , y

(2)
n ) (real and imaginary part). As a

consequence of Theorem 2.4 applied to (5.1), there exist two sequences {Yk}k≥1

and {Y ′k}k≥1 of independent Gaussian standard random variables such that

y
(1)
1 = aY1, y

(1)
2 = a

2pY2, . . . , y
(1)
n = a

npYn,

y
(2)
1 = aY ′1 , y

(2)
2 = a

2pY
′
2 , . . . , y

(2)
n = a

npY
′
n.

The log-likelihood function then reads

`n(a, p) =

n∑
k=1

log

(
1√

2π
a2

k2p

exp
(
− 1

2

(y
(1)
k )2

a2

k2p

))
+

n∑
k=1

log

(
1√

2π
a2

k2p

exp
(
− 1

2

(y
(2)
k )2

a2

k2p

))

= −n log(2π)− 2n log(a) + 2p

n∑
k=1

log(k)− 1

2a2

n∑
k=1

k2p
(
(y

(1)
k )2 + (y

(2)
k )2

)
and hence, if ok = (y

(1)
k )2 + (y

(2)
k )2, k = 1, . . . , n, we get

∂`n
∂a

= −2n

a
+

1

a3

n∑
k=1

k2pok

∂`n
∂p

= 2

n∑
k=1

log(k)− 1

a2

n∑
k=1

log(k)k2pok =

n∑
k=1

log(k)
(

2− k2pok
a2

)
(5.3)

As expected, when p0 is a known parameter,

â2 =
1

2n

n∑
k=1

k2p0ok, 2n â
2

a20
∼ χ2

2n,

where χ2
2n is a chi-square distribution with 2n degree of freedom, while nothing

is known about the distribution of p̂, for small n, and for the distribution of the
couple (â, p̂). We have the following asymptotic results, whose proof may be found
in Appendix D.

Theorem 5.1. There exists an ML estimator {p̂n}n≥1, zero of the equation (5.3),
such that

p̂n
a.s.−→
n→∞

p0,
p̂n − p0

2
√∑n

1 log2(k)

L−→
n→∞

N(0, 1).

Moreover,

2

 √
n
a0

−
∑n
k=1 log(k)√

n

−
∑n
k=1 log(k)

a0
√∑n

k=1 log2(k)

√∑n
k=1 log2(k)

(ân − a0

p̂n − p0

)
L−→

n→∞

(
1
−1

)
Z, (5.4)

where Z is a standard Gaussian variable.
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Figure 5.3. Plot of 200 (â, p̂)-joint simulations (blue point) of
data coming from (5.1) for different values of a and p (red stars).
In these pictures, n = 40 (see Section 5.1 for notations).

As a corollary of Theorem 5.1, the joint perfect correlation between ân and
p̂n is asymptotically predicted. In Figure 5.3 we show this fact by plotting the
maximum likelihood estimates of 200 simulated processes from model (5.1), where
the correlation coefficient ρ > 0.94 for n = 40 and different values of a0 and p0. In
Figure 5.4, we plot the corresponding computed left-hand part of (5.4).

6. Conclusions and perspectives

The results we presented in this paper, together with the parametric models
(5.1) and (5.2), are useful to represent the border of circular objects where random
noise is present. The statistical results might help the practitioners to estimate
the model parameters; confidence intervals may be found when dealing with large
populations of objects.

A practical advantage of this model is its computer usability: often stochastic
processes are represented in computers as discrete values, and only a subset of their
Fourier coefficients are available; these models overcome this issue, allowing to find
the parameters that best fit the represented process.

In conclusion, the parametric models might be considered in the applications
more appropriate alternative than the Brownian Bridge. Both of the models have a
more solid theoretical background, and they present more flexible in terms of path
regularity.

A natural perspective would be to extend the presented results in order to model
the shape of the border of a generic d-dimensional star-shaped object, starting from
the three dimensional case, where the Fourier basis is more treatable, maintaining
the usability of the models.
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Figure 5.4. Theorem 5.1 predicts that the left-hand part of (5.4)
transforms data from Figure 5.3 into i.i.d. vectors with a gaussian
distribution concentrated on y = −x (red line).

Appendix A. Proofs of results of Section 2

Proof of the Theorem 2.4. By Mercer Theorem (see, e.g., Ash (1990)) we know
that if {en}n≥0 is an orthonormal basis for the space spanned by the eigenfunctions
corresponding to nonzero eigenvalues of the integral operator (2.1) then, uniformly,
absolutely and in L2[0, 1]× [0, 1],

C(s, t) =

∞∑
k=0

ek(t)ek(s)λk, (A.1)

where λk is the eigenvalue corresponding to ek. By hypothesis, since C(s, t) =

C̃(|t− s|) = C̃(|t− s|+ 1) by Remark 2.3, we get

∫ 1

0

C̃(s) cos(2nπs)ds = an,

∫ 1

0

C̃(s) sin(2nπs)ds = 0, (A.2)

and hence

C̃(τ) = a0 + 2

∞∑
n=0

an cos(2nπτ). (A.3)
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It is simple to prove that the sequence {sn(t), cn(t)}n≥0 contains all the eigenfunc-
tions of the operator (2.1). In fact,∫ 1

0

C(t, τ)cn(τ)dτ =
√

2

∫ 1

0

C̃(s) cos(2nπ(t+ s))dt

= cn(t)

∫ 1

0

cos(2nπs)C̃(s)ds− sn(t)

∫ 1/2

−1/2

sin(2nπs)C̃(s)ds

= ancn(t),

(A.4)

the same relation holding when cn(t) is replaced by sn(t). By (A.3), we get

C(s, t) = C̃(s− t) = a0 +

∞∑
k=1

ak cos(2kπ(s− t))

= a0 + 2

∞∑
k=1

ak cos(2kπs) cos(2kπt) + 2

∞∑
k=1

ak sin(2kπs) sin(2kπt)

= a0 +

∞∑
k=1

akck(s)ck(t) +

∞∑
k=1

aksk(s)sk(t)

where this equality holds uniformly, absolutely and in L2[0, 1] × [0, 1] by Mercer
Theorem (cfr. (A.1)).

Now, since C(s, t) is a covariance function, it is positively definite, and hence
an ≥ 0, ∀n. Moreover, since {an}n≥0 ∈ `1, if we define cn =

√
an, then {cn}n≥0 ∈

`2. From Theorem 2.1 we deduce the existence of two independent sequences of
independent standard Gaussian variables {Yk}k≥1 and {Y ′k}k≥0 such that in mean
square, uniformly in t

xt = c0Y
′
0 +

∞∑
k=1

ck(Yksk(t) + Y ′kck(t)).

� �

Proof of the Theorem 2.5. The sequence of Gaussian processes y
(n)
t converges to a

periodical {yt}t∈[0,1] in mean square uniformly in t, since it is a Cauchy sequence:

sup
t∈[0,1]

E[|y(n)
t − y(m)

t |2] = 2

m∑
k=n

c2k −→
m,n→∞

0.

Hence, E[yt] ≡ 0, and

Cov(yt, ys) = c20 +

∞∑
k=1

c2k cos(2kπ(s− t))

is a continuous function. Finally, {yt}t∈[0,1] is a Gaussian process, since the two
sequences {Yk}k≥1 and {Y ′k}k≥0 are formed by independent Gaussian variables. �

�

Proof of the Theorem 2.8. Necessity. Assume there exists a process {xt}t∈[0,1] ∈
HZ which generates {yt}t∈[0,1] ∈H0. The covariance function C(s, t) of {xt}t∈[0,1]

is given as in (2.2):

C(s, t) = c20 +

∞∑
k=1

c2kck(s)ck(t) +

∞∑
k=1

c2ksk(s)sk(t).
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If we define x = C(0, 0) =
∑∞

0 c2k, pi = c2i /x, and

D(s, t) =
C(s, t)

x
= p0 +

∞∑
k=1

pkck(s)ck(t) +

∞∑
k=1

pksk(s)sk(t),

then, x > 0 and, by (2.3), we obtain

xR(s, t) = D(s, t)−D(0, t)D(s, 0)

= p0 +

∞∑
k=1

pkck(s)ck(t) +

∞∑
k=1

pksk(s)sk(t)−
(
p0 +

∞∑
k=1

pkck(s)
)(
p0 +

∞∑
k=1

pkck(t)
)
.

(A.5)
(A.5) and (2.4) give

xrsskj =

{
pk if k = j > 0

0 if k 6= j
(A.6)

xrcckj =

{
pk − p2

k if k = j ≥ 0

−pkpj if k 6= j
(A.7)

rsckj = rcskj = 0

Since
∑∞

0 pk = 1, if r̄ =
∑∞
k=1 r

ss
kk, we obtain by (A.6)

xr̄ = 1− p0.

Assume r̄ = 0, then p0 = 1, which is absurd since R(s, t) 6= 0. Hence r̄ > 0, and we
define

x =
r̄ − rcc00

r̄2
, (A.8)

Thesis follows by combining (A.8) and (A.7).

Sufficiency. Given the matrices of the 2-D Fourier series as in the theorem
assumption, set x > 0 as in (A.8). Define

pk = rsskk
r̄ − rcc00

r̄2
, p0 =

rcc00

r̄
.

Then {pk}k≥0 is a non-negative sequence such that
∑
k pk = 1. Define

xt =
√
xp0Y

′
0 +

n∑
k=1

√
xpk(Yksk(t) + Y ′kck(t)).

By Theorem 2.4, we have

C(s, t) = x
(
p0 +

∞∑
k=1

pkck(s)ck(t) +

∞∑
k=1

pksk(s)sk(t)
)
.

It is straightforward to check that (A.6) and (A.7) hold. The fact that the solution
is unique follows immediately from the necessary condition. � �
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Appendix B. Proof of the Theorem 3.1

The case xt ≡ k is obvious. Let C(t, s) = C̃(t− s) be the covariogram function

of {xt}t∈[0,1] (see (2.2) for its expansion). Since xt ≡ k ⇐⇒ C̃(0) = 0, we assume,

without loss of generalities, that C̃(0) = 1.
A straightforward computation gives that, if {yt}t∈[0,1] ∈ H0 is generated by

{xt}t∈[0,1] ∈ H , then {yt}t∈[0,1] is a Gaussian process with null expectation and
continuous covariance function

R(t, s) = C̃(t− s)− C̃(t)C̃(s)

C̃(0)
= C̃(t− s)− C̃(t)C̃(s). (B.1)

Hence, given the covariogram function C(s, t) = C̃(t−s) of the generating process
{xt}t∈[0,1], we need to study the spectrum of the operator (2.1), where C is replaced
by R given in (B.1).

As in (A.3) and (2.2), we write C̃(t) = a0 + 2
∑∞
n=1 an cos(2nπt) with 1 =

a0 + 2
∑∞
n=1 an since C̃(0) = 1. Let f(t) be an eigenfunction of (B.1); from the

expansion theorem (see Ash (1990)) we have in L2[0, 1],

f(t) = f0 +

∞∑
n=1

f cncn(t) + fsnsn(t). (B.2)

where f0 =
∫ 1

0
f(τ)dτ, f cn =

∫ 1

0
cn(τ)f(τ)dτ and fsn =

∫ 1

0
sn(τ)f(τ)dτ. Let’s look

for the eigenvalue related to f :∫ 1

0

R(s, t)f(t)dt =

∫ 1

0

C̃(t− s)f(t)dt− C̃(s)

∫ 1

0

C̃(t)f(t)dt = ãf(s). (B.3)

Substituting (B.2) into (B.3), and integrating with the results in (A.2) and (A.4),
yields

a0f0 +

∞∑
n=1

an(f cncn(s) + fsnsn(s))− C̃(s)
(
a0f0 +

√
2

∞∑
n=1

anf
c
n

)
= ãf(s). (B.4)

B.1. sn(s) eigenfunctions. For any an 6= 0, it is straightforward to see that
f(s) = sn(s) is an eigenfunction, by a direct substitution in (B.4), and that ã = an.
Moreover, we are going to state more: the only eigenfunctions which contains some
fsk 6= 0 are indeed sn(s) (when an 6= 0).

Assume that ∃k : fsk 6= 0 and, by contradiction, f(t) 6= sk(t).
By multiplying both members of (B.4) by sk(s) and integrating, we obtain akf

s
k =

ãfsk , i.e., ak = ã. Since ak 6= 0, then sk(t) is an eigenfunction. This eigenfunction is
orthogonal to f(s) by Mercer Theorem, and hence

0 =

∫ 1

0

sk(s)f(s)ds = fsk .

Summing up, for any an 6= 0, sn(t) is an eigenfunction associated to ã = an, and
the other eigenfunctions do not contain the terms in {sn(t)}n≥1 (they are even
function).



NOISE MODELS ON THE CIRCUMFERENCE 17

B.2. The other eigenfunctions of (B.4). To conclude the proof, we should find
another sequence of eigenfunctions with eigenvalues {ãn}n≥1 � {an}n≥1. We will
first obtain a simple result on the coefficients of the eigenfunctions. Then we will
introduce the multiplicity of the eigenvectors {an}n≥1 in order to conclude the proof
accordingly.

The other eigenfunction takes the form f(t) = f0+
∑∞
k=1 f

c
kck(t). By multiplying

both members of (B.4) by cn(s) and integrating, we obtain{
a0f0 − a0(a0f0 +

√
2
∑∞
k=1 akf

c
k) = ãf0, n = 0;

anf
c
n −
√

2an(a0f0 +
√

2
∑∞
k=1 akf

c
k) = ãf cn, n > 0.

(B.5)

As an immediate consequence, (an = 0)⇒ (f cn = 0).

Lemma B.1. {f cn}n≥0 ∈ `1, and f0 +
√

2
∑∞
n=1 f

c
n = 0.

Proof. Recall that an ≥ 0, and that a0 + 2
∑∞
n=1 an = C̃(0) = 1. For n > 0, by

(B.5), we have

|f cn| ≤
an|f cn| −

√
2an(a0|f0|+

√
2
∑∞
k=1 ak|f ck |)

ã
,

and since {ak|f ck |}k≥0 ∈ `1 (as a product of two `2 sequences), and {an}n≥1 ∈ `1,

we obtain the first part of the thesis. By (B.5) and a0 + 2
∑∞
n=1 an = C̃(0) = 1, we

get

f0 +
√

2

∞∑
n=1

f cn =
a0f0 − a0(a0f0 +

√
2
∑∞
k=1 akf

c
k)

ã
+
√

2

∞∑
n=1

anf
c
n −
√

2an(a0f0 +
√

2
∑∞
k=1 akf

c
k)

ã

=
a0f0 +

√
2
∑∞
n=1 anf

c
n

ã
−
a0f0 +

√
2
∑∞
k=1 akf

c
k

ã

(
a0 + 2

∞∑
n=1

an

)
= 0.

� �

Definition B.2 (Multiplicity and support). Given {an}n≥1, we define the support
Sã of ã:

Sã = {k : ak = ã}.
The multiplicity mã of a number ã > 0 is the cardinality of Sã:

mã = #{k : ak = ã}.

It is clear that mã <∞ because {an}n≥1 ∈ `1.

Lemma B.3. If mã = k > 0, then there are exactly k−1 orthogonal eigenfunctions
of R related to ã. Moreover for anyone of these k − 1 eigenfunctions,

n 6∈ Sã =⇒ f cn = 0.

Proof. Let ã > 0 be such that mã > 1.
It is simple to prove that there always exist mã − 1 orthogonal eigenfunctions

related to ã with f cn = 0 if an 6∈ Sã. We have two possibilities:

• 0 ∈ Sã or, equivalently, a0 = ã. In this case, (B.5) is equivalent to the
following system{

f cn = 0, n 6∈ Sã
ã
(
f0 +

√
2
∑
n∈Sã\{0} f

c
n

)
= 0.
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• 0 6∈ Sã. In this case, (B.5) is equivalent to the following system{
f cn = 0, n 6∈ Sã
ã
(∑

n∈Sã f
c
n

)
= 0.

In both cases, there exist a k − 1-dimensional orthogonal basis for the solution
system.

We now need to prove that there are not other eigenfunctions related to ã.
Assume that f cn̄ 6= 0. We recall that this fact implies an̄ 6= 0. If n̄ = 0, from (B.5)
we have that {

(a0−ã)f0
a0

= a0f0 +
√

2
∑∞
k=1 akf

c
k ,

(an−ã)fcn√
2an

= a0f0 +
√

2
∑∞
k=1 akf

c
k , n ∈ Sã

The second equation shows that a0f0 +
√

2
∑∞
k=1 akf

c
k = 0, since an = ã, and hence

a0 = ã, which means that n̄ ∈ Sã. Analogously, if n̄ 6= 0, from (B.5) we can prove
that n̄ ∈ Sã, that completes the proof. � �

Let {a(n)}n≥1 be the decreasing reordering of the sequence {an}n≥1, positive and
without repetition: a(1) > a(2) > · · · > a(n) > · · · and ∀an > 0, exists k such that
an = a(k). To conclude the proof, we must find a sequence of eigenvalues {ãn}n≥1

such that a(n) > ãn > a(n+1).

Lemma B.4. For each n ∈ N, there exists a unique eigenvalue ãn such that a(n) >
ãn > a(n+1). Moreover, mãn = 1.

Proof. We have already observed that a0f0 +
√

2
∑∞
k=1 akf

c
k = 0 implies, for any

n, an = ã or f cn = 0. Hence, without loss of generalities, we assume a0f0 +√
2
∑∞
k=1 akf

c
k = c 6= 0 and we continue the proof. From (B.5), we obtain

f0 = c
a0

a0 − ã
, f cn = c

√
2an

an − ã
. (B.6)

These relations with, again, a0f0 +
√

2
∑∞
n=1 anf

c
n = c, imply

a2
0

a0 − ã
+ 2

∞∑
n=1

a2
n

an − ã
= 1. (B.7)

We are going to show that there exists a unique solution ãn of (B.7) such that
a(n) > ãn > a(n+1). This solution is the searched eigenvalue, whose corresponding
eigenfunction’ expansion is given in (B.6).

Let us consider the series

S(x) =
a2

0

a0 − x
+ 2

∞∑
n=1

a2
n

an − x

and the derivative series

S′(x) =
a2

0

(a0 − x)2
+ 2

∞∑
n=1

a2
n

(an − x)2

then they converge absolutely in each compact set not containing {an}n≥1. We
have that

dom(S) = dom(s) = ∪n(a(n+1), a(n)), S′(x) = s(x),∀x ∈ dom(S).
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Moreover for each n,

lim
x→a+

(n+1)

S(x) = −∞, lim
x→a−

(n)

S(x) = +∞, S′(x) > 0,∀x ∈ (a(n+1), a(n)).

Hence, there exists a unique ãn ∈ (a(n+1), a(n)) such that S(ãn) = 1, i.e. for which
(B.7) holds. The unique corresponding eigenfunction is given by (B.6), that implies
also mãn = 1:

f(t) =
a0

a0 − ãn
+
√

2

∞∑
n=1

an
an − ãn

cn(t).

To complete the proof, we show that there are not eigenvalues greater then a(1) =
maxn an or smaller than any an > 0.

In fact, if we assume that there exists an eigenvalue â > max an, then (B.6) shows
that the sequence {f ck}k≥0 is made of either nonnegative or nonpositive numbers,
that together with Lemma B.1 implies f ck = 0, for any f .

In the same way it can be shown that there are no eigenvalues smaller than any
an > 0. � �

Appendix C. Proofs of results of Section 4

We simply deduce the results basing on the fact that if Y ≈ N(0, σ2), then

E(|Y |p) = σp
2
p
2 Γ
(
p+1
2

)
√
π

, (see, e.g., Patel and Read (1982)).

Proof of the Theorem 4.2. Observe that

E(|xt+h − xt|2) = E(x2
t + x2

t+h − 2xt+hxt) = R(t+ h, t+ h) +R(t, t)− 2R(t+ h, t).

Since there exists an M such that |R(s+ δ1, t+ δ2)−R(s, t)| ≤M‖(δ1, δ2)‖α, then
there exists a D such that

E(|xt+h − xt|2) ≤ D|h|α.

The thesis follows.
� �

Proof of the Theorem 4.3. The first part of the theorem is a simple calculation.
The second holds is a consequence of Theorem 4.1, since

E(|xt+h − xt|2) = E(E(|xt+h − xt|2|x0)) = E(E((xt+h − x0)− (xt − x0))2|x0))

= R(t+ h, t+ h) +R(t, t)− 2R(t+ h, t) ≤ D|h|α.

� �

Proof of the Theorem 4.5. It is clear that

∂2C̃(δ) = 2∂2
∞∑
k=1

c2k cos(2kπ(δ)) = −2

∞∑
k=1

(2π)2k2c2k cos(2kπ(δ))

and that ∂2C̃ ∈ C0,α([0, 1]), for some 0 < α ≤ 1. Moreover we have that uniformly
in t and in mean square

xt = c0Y
′
0 +

∞∑
k=1

ck(Yksk(t) + Y ′kck(t)).
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and, from Theorem 2.4, there also exist a stochastic process in H such that uni-
formly in t and in mean square

x̃t = 2π

∞∑
k=1

kck(Ykck(t)− Y ′ksk(t)),

which has covariogram function belonging to C0,α([0, 1]) given by

˜̄C(δ) = 2

∞∑
k=1

(2π)2k2c2k cos(2kπ(δ)).

If we define

y
(n)
t := c0Y

′
0 +

n∑
k=1

ck(Yksk(t) + Y ′kck(t))

ỹ(n)(t) := 2π

n∑
k=1

kck(Ykck(t)− Y ′ksk(t)),

than y
(n)
t = y

(n)
0 +

∫ t
0
ỹ

(n)
τ dτ , a.s. for any n, while for each fixed t, in mean square

we have
∫ t

0
ỹ

(n)
τ dτ →

∫ t
0
x̃τdτ. Since√

E
(

[xt − x0 −
∫ t

0

x̃τdτ ]2
)
≤
√
E
(

[xt − y(n)
t ]2

)
+

√
E
(

[y
(n)
0 +

∫ t

0

ỹ
(n)
τ dτ − x0 −

∫ t

0

x̃τdτ ]2
)
−→
n→∞

0,

it follows that a.s. xt = x0 +
∫ t

0
x̃τdτ. By Theorem 4.2 we know that almost all

trajectory path of x̃t belongs to C0,β([0, 1]), with β < α
2 , and thesis follows. � �

Appendix D. Proofs of results of Section 5

Proof of Theorem 5.1. Assume p0 be the true parameter, we may define a sequence
of i.i.d. random variables {Zk}k≥0 in the following way:

Zk ∼
k2p0ok
a2

0

∼ χ2
2 ∼ exp( 1

2 ). (D.1)

Equation (5.3), as a function of (p, p0) and {Zk}k≥1, becomes

∂`n
∂p

=

n∑
k=1

log(k)
(

2− k2(p−p0)Zk

)
.

With the notation of Hall and Heyde (1980, pp. 155-161), we have

In(p) =

n∑
1

log2(k)E
(

(2− k2(p−p0)Zk)2|Z1, . . . , Zk−1

)
=

n∑
1

log2(k)2(1 + (1− 2k2(p−p0))2),

Jn(p) = − 2

a2
0

n∑
k=1

log2(k)k2pok = −2

n∑
k=1

log2(k)k2(p−p0)Zk
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and, in particular,

In(p0) = 4

n∑
1

log2(k), (D.2)

Jn(p0) = −2

n∑
1

log2(k)Zk. (D.3)

The thesis is a consequence of Hall and Heyde (1980, pp. 155-161), where the
Assumption 1 and Assumption 2 on page 160 guarantee the existence of a ML
estimator {p̂n}n≥1 such that

p̂n
a.s.−→
n→∞

p0,
p̂n − p0√
In(p0)

L−→
n→∞

N(0, 1).

Check of Hall and Heyde (1980, Assumption 1, p. 160). The fact that

In(p0)
a.s.−→
n→∞

∞ is a consequence of (D.2). As In(p0) = E(In(p0)), then In(p0)/E(In(p0))→
1 uniformly on compacts. By (D.2) and (D.3), we have

Jn(p0)

In(p0)
=
−2
∑n

1 log2(k)Zk

4
∑n

1 log2(k)
,

and hence, by (D.1), we have

E
(Jn(p0)

In(p0)

)
= 1, V ar

(Jn(p0)

In(p0)

)
=

∑n
1 log4(k)(∑n
1 log2(k))2

Since, for n ≥ 4,

log2(n)∑n
1 log2(m)

≤ 1∑n
n/2

( log(n/2)
log(n)

)2 ≤ 1∑n
n/2

(
1
2

)2 ≤ 8

n
(D.4)

then
∑∞
n=1

( log2(n)∑n
1 log2(m)

)2
<∞, and hence V ar

(Jn(p0)
In(p0)

)
→ 0 by Kronecker’s Lemma,

which ensures that In(p0)/E(In(p0))→ −1 in probability uniformly on compacts.
Check of Hall and Heyde (1980, Assumption 2, p. 160). Since, for any p,
Ep(In(p)) does not change, then Assumption 2.i) is automatically satisfied.

Now, if |pn − p0| ≤ δ/
√
In(p0), we get

|Jn(pn)− Jn(p0)| ≤ 2

n∑
k=1

log2(k)
(
k

δ√∑n
1 log2(m) − 1

)
Zk (D.5)

|In(pn)− In(p0)| ≤
n∑
k=1

log2(k)8k
2 δ√

In(p0) (k
2 δ√

In(p0) − 1)

Note that, since k ≤ n, we have

1 ≤ k
2 δ√

In(p0) ≤ e
2 δ√

In(p0)
log(n)

≤ exp(2δ)

and hence, for sufficient large n and k ≤ n, since

k
2 δ√

In(p0) − 1 ≤ C02
δ√
In(p0)

log(k), (D.6)
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we obtain ∣∣∣In(pn)− In(p0)

In(p0)

∣∣∣ ≤ C1

∑n
k=1 log3(k)√∑n

1 log2(k)

4
∑n

1 log2(k)
= C2

n∑
k=1

( log2(k)∑n
1 log2(m)

) 3
2

By (D.4), then
∑∞
n=1

( log2(n)∑n
1 log2(m)

) 3
2 < ∞, and hence, by Kronecker’s Lemma, we

get Assumption 2.ii), namely ∣∣∣In(pn)− In(p0)

In(p0)

∣∣∣→ 0.

The last Assumption 2.iii) requires that

Jn(pn)− Jn(p0)

In(p0)
→ 0, a.s.

To check this, we first note that∑n
k=1 log2(k)

(
k

δ√∑n
1 log2(m) − 1

)∑n
1 log2(k)

→ 0,

as a consequence of Kronecker’s Lemma, (D.6) and (D.4). Then∣∣∣E(Jn(pn)− Jn(p0)

In(p0)

)∣∣∣ ≤ E(|Jn(pn)− Jn(p0)|)
In(p0)

→ 0,

and hence, a sufficient condition for Jn(pn)−Jn(p0)
In(p0) → 0 to hold, is that

V ar
(Jn(pn)− Jn(p0)

In(p0)

)
→ 0. (D.7)

By (D.5), since V ar(Xk) = 4, we obtain

V ar(Jn(pn)− Jn(p0)) ≤ 8

n∑
k=1

log4(k)
(
k

δ√∑n
1 log2(m) − 1

)2
.

Again, by (D.6), we obtain

V ar
(Jn(pn)− Jn(p0)

In(p0)

)
≤

C1

∑n
k=1 log6(k)∑n
1 log2(k)(

4
∑n

1 log2(k)
)2 = C2

n∑
k=1

( log2(k)∑n
1 log2(m)

)3

As above, by (D.4) and Kronecker’s Lemma, we obtain (D.7).

We sketch the second part of the proof, with the notation of Heyde (1997,
pag.191). If we define

Gn(θ) =


G(1)
n (a, p) =

1

a

n∑
k=1

(k2p

a2
ok − 2

)
=

1

a

n∑
k=1

(k2(p−p0)a2
0

a2
Zk − 2

)
G(2)
n (a, p) =

n∑
k=1

log(k)
(

2− k2p

a2
ok

)
=

n∑
k=1

log(k)
(

2− k2(p−p0)a2
0

a2
Zk

)
and

H−1
n (a0, p0) =

(
a0

2
√
n

0

0 1

2
√∑n

k=1 log2(k)

)
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it is simple to state that

H−1
n (a0, p0) ·Gn(a0, p0)

L−→
n→∞

(
1
−1

)
Z. (D.8)

In fact, since {Zk}k≥0 is a i.i.d. sequence of random variables with mean 2 and
variance 4 (see (D.1)), we get,

E(G(1)
n (a0, p0)G(2)

n (a0, p0)) = −E
( 1

a0

n∑
k=1

log(k)(2− Zk)2
)

= − 4

a0

n∑
k=1

log(k)

and hence

Corr
( a0

2
√
n
G(1)
n (a0, p0),

G
(2)
n (a0, p0)

2
√∑n

k=1 log2(k)

)
=

−
∑n
k=1 log(k)

√
n
√∑n

k=1 log2(k)
−→
n→∞

−1.

Now, since

Ġ(a0, p0) =

 − 4n
a20

(
1 + 3

4

∑n
k=1(Zk−2)

n

)
4
∑n
k=1 log(k)

a0

(
1 +

∑n
k=1 log(k)(Zk−2)

2
∑n
k=1 log(k)

)
4
∑n
k=1 log(k)

a0

(
1 +

∑n
k=1 log(k)(Zk−2)

2
∑n
k=1 log(k)

)
−4
∑n
k=1 log2(k)

(
1 +

∑n
k=1 log2(k)(Zk−2)

2
∑n
k=1 log2(k)


�

(
− 4n
a20

4
∑n
k=1 log(k)

a0
4
∑n
k=1 log(k)

a0
−4
∑n
k=1 log2(k)

)
then, by (D.8) (see Heyde (1997, pag.191)), we get

H−1
n (a0, p0) · (−Ġ(a0, p0)) ·

(
ân − a0

p̂n − p0

)
L−→

n→∞

(
1
−1

)
Z,

which is the thesis, once the conditions of uniformly boundedness are checked as
for the previous case. � �

References

Ash RB (1990) Information theory. Dover Publications Inc., New York, corrected
reprint of the 1965 original

Bass RF (2011) Stochastic processes. Cambridge Series in Statistical and Proba-
bilistic Mathematics, vol 33. Cambridge University Press, Cambridge

Brigham EO (1982) FFT: schnelle Fourier-Transformation. Einführung in die
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